Skip to main content

Research Repository

Advanced Search

Synthesizing carbon nanotubes and carbon nanofibers over supported-nickel oxide catalysts via catalytic decomposition of methane

Abstract

Supported-NiO catalysts were tested in the synthesis of carbon nanotubes and carbon nanofibers by catalytic decomposition of methane at 550 °C and 700 °C. Catalytic activity was characterized by the conversion levels of methane and the amount of carbons accumulated on the catalysts. Selectivity of carbon nanotubes and carbon nanofiber formation were determined using transmission electron microscopy (TEM). The catalytic performance of the supported-NiO catalysts and the types of filamentous carbons produced were discussed based on the X-ray diffraction (XRD) results and the TEM images of the used catalysts. The experimental results show that the catalytic performance of supported-NiO catalysts decreased in the order of NiO/SiO 2 > NiO/HZSM-5 > NiO/CeO 2 > NiO/Al 2 O 3 at both reaction temperatures. The structures of the carbons formed by decomposition of methane were dependent on the types of catalyst supports used and the reaction temperatures conducted. It was found that Al 2 O 3 was crucial to the dispersion of smaller NiO crystallites, which gave rise to the formation of multi-walled carbon nanotubes at the reaction temperature of 550 °C and a mixture of multi-walled carbon nanotubes and single-walled carbon nanotubes at 700 °C. Other than NiO/Al 2 O 3 catalyst, all the tested supported-NiO catalysts formed carbon nanofibers at 550 °C and multi-walled carbon nanotubes at 700 °C except for NiO/HZSM-5 catalyst, which grew carbon nanofibers at both 550 °C and 700 °C. © 2007 Elsevier B.V. All rights reserved.

Citation

Chai, S. P., Zein, S. H. S., & Mohamed, A. R. (2007). Synthesizing carbon nanotubes and carbon nanofibers over supported-nickel oxide catalysts via catalytic decomposition of methane. Diamond and related materials, 16(8), 1656-1664. https://doi.org/10.1016/j.diamond.2007.02.011

Journal Article Type Article
Acceptance Date Feb 19, 2007
Online Publication Date Feb 24, 2007
Publication Date 2007-08
Deposit Date Jul 7, 2020
Journal Diamond and Related Materials
Print ISSN 0925-9635
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 16
Issue 8
Pages 1656-1664
DOI https://doi.org/10.1016/j.diamond.2007.02.011
Keywords Carbon nanotubes; Carbon nanofibers; Catalytic process; Electron microscopy
Public URL https://hull-repository.worktribe.com/output/549988
Publisher URL https://www.sciencedirect.com/science/article/abs/pii/S0925963507001781?via%3Dihub