Skip to main content

Research Repository

Advanced Search

All Outputs (6)

Effect of Particle Wettability and Particle Concentration on the Enzymatic Dehydration of n-Octanaloxime in Pickering Emulsions (2020)
Journal Article
Bago Rodriguez, A. M., Schober, L., Hinzmann, A., Gröger, H., & Binks, B. P. (2020). Effect of Particle Wettability and Particle Concentration on the Enzymatic Dehydration of n-Octanaloxime in Pickering Emulsions. Angewandte Chemie, 59, https://doi.org/10.1002/anie.202013171

© 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH Pickering emulsion systems have emerged as platforms for the synthesis of organic molecules in biphasic biocatalysis. Herein, the catalytic performance was evalua... Read More about Effect of Particle Wettability and Particle Concentration on the Enzymatic Dehydration of n-Octanaloxime in Pickering Emulsions.

Catalysis in Pickering emulsions (2020)
Journal Article
Rodriguez, A. M. B., & Binks, B. P. (2020). Catalysis in Pickering emulsions. Soft matter, 16(45), 10221-10243. https://doi.org/10.1039/d0sm01636e

Particle-stabilised or Pickering emulsions are versatile systems. In the past 10 years a new application has emerged in the field of catalysis to use them as vehicles to carry out catalytic reactions, allowing a more environmentally friendly process... Read More about Catalysis in Pickering emulsions.

Capsules from Pickering emulsion templates (2019)
Journal Article
Bago Rodriguez, A. M., & Binks, B. P. (2019). Capsules from Pickering emulsion templates. Current Opinion in Colloid and Interface Science, 44, 107-129. https://doi.org/10.1016/j.cocis.2019.09.006

Following the resurgence of interest in particle-stabilised or Pickering emulsions recently, the preparation of capsules from such templates has become feasible. We review some of the recent activity in this area and focus on both the methods used to... Read More about Capsules from Pickering emulsion templates.

Emulsions stabilized with polyelectrolyte complexes prepared from a mixture of a weak and a strong polyelectrolyte (2019)
Journal Article
Bago Rodriguez, A. M., Binks, B. P., & Sekine, T. (2019). Emulsions stabilized with polyelectrolyte complexes prepared from a mixture of a weak and a strong polyelectrolyte. Langmuir : the ACS journal of surfaces and colloids, 35(20), 6693-6707. https://doi.org/10.1021/acs.langmuir.9b00897

The possibility of stabilizing emulsions with polyelectrolyte complexes (PEC) obtained from the interaction of two non-surface-active oppositely charged polyelectrolytes (PEL) is described. Poly(allylamine hydrochloride) (PAH) and poly(4-styrene sulf... Read More about Emulsions stabilized with polyelectrolyte complexes prepared from a mixture of a weak and a strong polyelectrolyte.

Emulsion stabilisation by complexes of oppositely charged synthetic polyelectrolytes (2017)
Journal Article
Bago Rodriguez, A. M., Binks, B. P., & Sekine, T. (2018). Emulsion stabilisation by complexes of oppositely charged synthetic polyelectrolytes. Soft matter, 14(2), 239-254. https://doi.org/10.1039/c7sm01845b

We investigate the possibility of stabilising oil-water emulsions from the polyelectrolyte complexes (PEC) obtained in mixtures of a strong cationic polyelectrolyte (poly(diallyldimethylammonium chloride), PDADMAC) and a weak anionic one (poly(acryli... Read More about Emulsion stabilisation by complexes of oppositely charged synthetic polyelectrolytes.

Novel stabilisation of emulsions by soft particles: polyelectrolyte complexes (2016)
Journal Article
Bago Rodriguez, A. M., Binks, B. P., & Sekine, T. (2016). Novel stabilisation of emulsions by soft particles: polyelectrolyte complexes. Faraday Discussions, 191, 255-285. https://doi.org/10.1039/c6fd00011h

We put forward the concept of a novel particle stabiliser of oil-water emulsions being the polyelectrolyte complex (PEC) formed between oppositely charged water-soluble polymers, in cases where either polymer alone is incapable of stabilising an emul... Read More about Novel stabilisation of emulsions by soft particles: polyelectrolyte complexes.