Skip to main content

Research Repository

Advanced Search

All Outputs (4)

The Uptake of Sporopollenin Exine Capsules and Associated Bioavailability of Adsorbed Oestradiol in Selected Aquatic Invertebrates (2021)
Journal Article
Chapman, E., Meichanetzoglou, A., Boa, A. N., Hetjens, H., Faetsch, S., Teuchies, J., …Rotchell, J. M. (2021). The Uptake of Sporopollenin Exine Capsules and Associated Bioavailability of Adsorbed Oestradiol in Selected Aquatic Invertebrates. Bulletin of Environmental Contamination and Toxicology, 107, 876–882. https://doi.org/10.1007/s00128-021-03364-8

Lycopodium clavatum sporopollenin exine capsules (SpECs) are known to both adsorb and absorb chemicals. The aim of the present work was to determine whether oestradiol (E2) is ‘bioavailable’ to bioindicator species, either pre-adsorbed to, or in the... Read More about The Uptake of Sporopollenin Exine Capsules and Associated Bioavailability of Adsorbed Oestradiol in Selected Aquatic Invertebrates.

Protein free microcapsules obtained from plant spores as a model for drug delivery: Ibuprofen encapsulation, release and taste masking (2013)
Journal Article
Diego-Taboada, A., Maillet, L., Banoub, J. H., Lorch, M., Rigby, A. S., Boa, A. N., Atkin, S. L., & Mackenzie, G. (2013). Protein free microcapsules obtained from plant spores as a model for drug delivery: Ibuprofen encapsulation, release and taste masking. Journal of Materials Chemistry B, 1(5), 707-713. https://doi.org/10.1039/c2tb00228k

Sporopollenin exine capsules (SEC) extracted from Lycopodium clavatum spores were shown to encapsulate ibuprofen as a drug model, with 97 ± 1% efficiency as measured by recovery of the loaded drug and absence of the drug on the SEC surface by scannin... Read More about Protein free microcapsules obtained from plant spores as a model for drug delivery: Ibuprofen encapsulation, release and taste masking.

Sequestration of edible oil from emulsions using new single and double layered microcapsules from plant spores (2012)
Journal Article
Diego-Taboada, A., Cousson, P., Raynaud, E., Huang, Y., Lorch, M., Binks, B., Queneau, Y., Boa, A. N., Atkin, S. L., Beckett, S. T., & Mackenzie, G. (2012). Sequestration of edible oil from emulsions using new single and double layered microcapsules from plant spores. Journal of Materials Chemistry, 22(19), 9767-9773. https://doi.org/10.1039/c2jm00103a

Microcapsules were obtained conveniently from Lycopodium clavatum spores possessing either a single layered shell of sporopollenin (exine) or double layered shell of sporopollenin and cellulose with an inner layer (intine). These microcapsules were f... Read More about Sequestration of edible oil from emulsions using new single and double layered microcapsules from plant spores.

Access to a primary aminosporopollenin solid support from plant spores (2010)
Journal Article
Barrier, S., Löbbert, A., Boasman, A. J., Boa, A. N., Lorch, M., Atkin, S. L., & MacKenzie, G. (2010). Access to a primary aminosporopollenin solid support from plant spores. Green chemistry : an international journal and green chemistry resource : GC, 12(2), 234-240. https://doi.org/10.1039/b913215e

Sporopollenin, which is a naturally occurring and highly resilient organic polymer constituting the external shell of spores and pollen grains, has been converted into a primary amine form with a loading of 0.58 +/- 0.04 mmol. g(-1) by reductive amin... Read More about Access to a primary aminosporopollenin solid support from plant spores.