Skip to main content

Research Repository

Advanced Search

Global oceanic anoxia linked with the Capitanian (Middle Permian) marine mass extinction (2023)
Journal Article
Song, H., Algeo, T., Song, H., Tong, J., Wignall, P., Bond, D. P., …Anbar, A. (2023). Global oceanic anoxia linked with the Capitanian (Middle Permian) marine mass extinction. Earth and planetary science letters, 610, Article 118128. https://doi.org/10.1016/j.epsl.2023.118128

The timing and causation of the Capitanian (late Middle Permian) biocrisis remain controversial. Here, a detailed uranium-isotopic (δ238U) profile was generated for the mid-Capitanian to lower Wuchiapingian of the Penglaitan section (the Guadalupian/... Read More about Global oceanic anoxia linked with the Capitanian (Middle Permian) marine mass extinction.

Middle Jurassic terrestrial environmental and floral changes linked to volcanism: Evidence from the Qinghai-Tibet Plateau, China (2023)
Journal Article
Zhang, P., Yang, M., Lu, J., Jiang, Z., Zhou, K., Liu, H., …Bond, D. P. (2023). Middle Jurassic terrestrial environmental and floral changes linked to volcanism: Evidence from the Qinghai-Tibet Plateau, China. Global and planetary change, 223, Article 104094. https://doi.org/10.1016/j.gloplacha.2023.104094

The breakup of Pangaea and the rapid opening of the Ligurian and Central Atlantic oceans during the Middle Jurassic resulted in widespread volcanism accompanied by significant shifts in global environments, climates, and floras. Although major volcan... Read More about Middle Jurassic terrestrial environmental and floral changes linked to volcanism: Evidence from the Qinghai-Tibet Plateau, China.

End-Permian terrestrial ecosystem collapse in North China: evidence from palynology and geochemistry (2023)
Journal Article
Zhang, P., Yang, M., Lu, J., Bond, D. P., Shao, L., Zhou, K., …Hilton, J. (2023). End-Permian terrestrial ecosystem collapse in North China: evidence from palynology and geochemistry. Global and planetary change, 222, Article 104070. https://doi.org/10.1016/j.gloplacha.2023.104070

The Permian-Triassic Mass Extinction (ca. 252 Ma; PTME) is the most severe biocrisis of the Phanerozoic in both the oceans and on land. The crisis saw the collapse of terrestrial ecosystems in low, mid and high latitudes. Although terrestrial plant l... Read More about End-Permian terrestrial ecosystem collapse in North China: evidence from palynology and geochemistry.

An astronomical timescale for the Permian-Triassic mass extinction reveals a two-step, million-year-long terrestrial crisis in South China (2023)
Journal Article
Hua, F., Shao, L., Zhang, T., Bond, D. P., Wang, X., Wang, J., …Hilton, J. (2023). An astronomical timescale for the Permian-Triassic mass extinction reveals a two-step, million-year-long terrestrial crisis in South China. Earth and planetary science letters, 605, Article 118035. https://doi.org/10.1016/j.epsl.2023.118035

The Permian-Triassic Mass Extinction (PTME) is the greatest biotic crisis of the Phanerozoic. In terrestrial settings, the PTME appears to have been diachronous and it has been suggested that losses initiated before the marine crisis. We examine orga... Read More about An astronomical timescale for the Permian-Triassic mass extinction reveals a two-step, million-year-long terrestrial crisis in South China.

Rapid marine oxygen variability: Driver of the Late Ordovician mass extinction (2022)
Journal Article
Kozik, N. P., Young, S. A., Newby, S. M., Liu, M., Chen, D., Hammarlund, E., …Owens, J. D. (2022). Rapid marine oxygen variability: Driver of the Late Ordovician mass extinction. Science Advances, 8(46), eabn8345. https://doi.org/10.1126/sciadv.abn8345

The timing and connections between global cooling, marine redox conditions, and biotic turnover are underconstrained for the Late Ordovician. The second most severe mass extinction occurred at the end of the Ordovician period, resulting in ~85% loss... Read More about Rapid marine oxygen variability: Driver of the Late Ordovician mass extinction.

Dynamic ocean redox conditions during the end-Triassic mass extinction: Evidence from pyrite framboids (2022)
Journal Article
Li, J., Song, H., Tian, L., Bond, D. P., Song, H., Du, Y., …Tong, J. (2022). Dynamic ocean redox conditions during the end-Triassic mass extinction: Evidence from pyrite framboids. Global and planetary change, 218, Article 103981. https://doi.org/10.1016/j.gloplacha.2022.103981

The end-Triassic (∼201 Mya) records one of the five largest mass extinction events of the Phanerozoic. Extinction losses were coincident with large igneous province volcanism in the form of the Central Atlantic Magmatic Province (CAMP) and major carb... Read More about Dynamic ocean redox conditions during the end-Triassic mass extinction: Evidence from pyrite framboids.

Two deep marine oxygenation events during the Permian-Triassic boundary interval in South China: relationship with ocean circulation and marine primary productivity (2022)
Journal Article
Ge, Y., & Bond, D. P. (2022). Two deep marine oxygenation events during the Permian-Triassic boundary interval in South China: relationship with ocean circulation and marine primary productivity. Earth-Science Reviews, 234, Article 104220. https://doi.org/10.1016/j.earscirev.2022.104220

Marine redox conditions through the Permian-Triassic (P-T) boundary interval have been intensively studied in South China with different redox proxies and from different sections. However, the resultant interpretations are inconsistent and sometimes... Read More about Two deep marine oxygenation events during the Permian-Triassic boundary interval in South China: relationship with ocean circulation and marine primary productivity.

Diachronous end-Permian terrestrial ecosystem collapse with its origin in wildfires (2022)
Journal Article
Lu, J., Wang, Y., Yang, M., Zhang, P., Bond, D. P., Shao, L., & Hilton, J. (2022). Diachronous end-Permian terrestrial ecosystem collapse with its origin in wildfires. Palaeogeography, palaeoclimatology, palaeoecology, 594, Article 110960. https://doi.org/10.1016/j.palaeo.2022.110960

The Permian-Triassic Mass Extinction (PTME) is the greatest biodiversity crisis in Earth history and while the marine crisis is increasingly well constrained, the timing and cause(s) of terrestrial losses remain poorly understood. There have been sug... Read More about Diachronous end-Permian terrestrial ecosystem collapse with its origin in wildfires.

Volcanically-Induced Environmental and Floral Changes Across the Triassic-Jurassic (T-J) Transition (2022)
Journal Article
Zhang, P., Lu, J., Yang, M., Bond, D. P., Greene, S. E., Liu, L., …Hilton, J. (2022). Volcanically-Induced Environmental and Floral Changes Across the Triassic-Jurassic (T-J) Transition. Frontiers in ecology and evolution, 10, Article 853404. https://doi.org/10.3389/fevo.2022.853404

The End-Triassic Mass Extinction (ETME) saw the catastrophic loss of ca. 50% of marine genera temporally associated with emplacement of the Central Atlantic Magmatic Province (CAMP). However, the effects of the ETME on land is a controversial topic.... Read More about Volcanically-Induced Environmental and Floral Changes Across the Triassic-Jurassic (T-J) Transition.

Sulfidic anoxia in the oceans during the Late Ordovician mass extinctions – insights from molybdenum and uranium isotopic global redox proxies (2021)
Journal Article
Dahl, T. W., Hammarlund, E. U., Rasmussen, C. M. Ø., Bond, D. P., & Canfield, D. E. (2021). Sulfidic anoxia in the oceans during the Late Ordovician mass extinctions – insights from molybdenum and uranium isotopic global redox proxies. Earth-Science Reviews, 220, Article 103748. https://doi.org/10.1016/j.earscirev.2021.103748

The Late Ordovician Mass Extinction wiped out 85% of animal species in two phases (LOME1 and LOME2). The kill mechanisms for the extinction phases are debated, but deteriorating climate and the expansion of marine anoxia appear to have been important... Read More about Sulfidic anoxia in the oceans during the Late Ordovician mass extinctions – insights from molybdenum and uranium isotopic global redox proxies.

Transient Permian-Triassic euxinia in the southern Panthalassa deep ocean (2021)
Journal Article
Takahashi, S., Strachan, L. J., Yin, R., Wignall, P. B., Bond, D. P., & Grasby, S. E. (in press). Transient Permian-Triassic euxinia in the southern Panthalassa deep ocean. Geology, 49(8), 889-893. https://doi.org/10.1130/G48928.1

Both the duration and severity of deep-water anoxic conditions across the Permian-Triassic mass extinction (PTME) are controversial. Panthalassa Ocean circulation models yield varying results, ranging from a well-ventilated deep ocean to rapidly deve... Read More about Transient Permian-Triassic euxinia in the southern Panthalassa deep ocean.

Tellurium in Late Permian-Early Triassic Sediments as a Proxy for Siberian Flood Basalt Volcanism (2020)
Journal Article
Regelous, M., Regelous, A., Grasby, S. E., Bond, D. P., Haase, K. M., Gleißner, S., & Wignall, P. B. (2020). Tellurium in Late Permian-Early Triassic Sediments as a Proxy for Siberian Flood Basalt Volcanism. Geochemistry, geophysics, geosystems G³, 21(11), Article e2020GC009064. https://doi.org/10.1029/2020GC009064

We measured the concentrations of trace elements in Late Permian to Early Triassic sediments from Spitsbergen. High mercury concentrations in sediments from the level of the Permo-Triassic Mass Extinction (PTME) at this location were previously attri... Read More about Tellurium in Late Permian-Early Triassic Sediments as a Proxy for Siberian Flood Basalt Volcanism.

Size variations in foraminifers from the early Permian to the Late Triassic: Implications for the Guadalupian-Lopingian and the Permian-Triassic mass extinctions (2020)
Journal Article
Feng, Y., Song, H., & Bond, D. P. (2020). Size variations in foraminifers from the early Permian to the Late Triassic: Implications for the Guadalupian-Lopingian and the Permian-Triassic mass extinctions. Paleobiology, 46(4), 511-532. https://doi.org/10.1017/pab.2020.37

The final 10 Myr of the Paleozoic saw two of the biggest biological crises in Earth history: the middlePermian extinction (often termed the Guadalupian–Lopingian extinction [GLE]) that was followed 7–8 Myr later by Earth's most catastrophic loss of d... Read More about Size variations in foraminifers from the early Permian to the Late Triassic: Implications for the Guadalupian-Lopingian and the Permian-Triassic mass extinctions.

Migration controls extinction and survival patterns of foraminifers during the Permian-Triassic crisis in South China (2020)
Journal Article
Benton, M. J., Liu, X., Song, H., Bond, D. P., Tong, J., & Benton, M. (2020). Migration controls extinction and survival patterns of foraminifers during the Permian-Triassic crisis in South China. Earth-Science Reviews, 209, Article 103329. https://doi.org/10.1016/j.earscirev.2020.103329

The Permian-Triassic mass extinction, the greatest biotic crisis in Earth history, triggered the complete replacement of ecosystems with the 5–10% surviving species giving rise to the Mesozoic fauna. Despite a long history of systematic studies on Pe... Read More about Migration controls extinction and survival patterns of foraminifers during the Permian-Triassic crisis in South China.

Late Ordovician mass extinction caused by volcanism, warming, and anoxia, not cooling and glaciation (2020)
Journal Article
Bond, D. P., & Grasby, S. E. (2020). Late Ordovician mass extinction caused by volcanism, warming, and anoxia, not cooling and glaciation. Geology, 48(8), 777-781. https://doi.org/10.1130/G47377.1

The Ordovician saw major diversification in marine life abruptly terminated by the Late Ordovician mass extinction (LOME). Around 85% of species were eliminated in two pulses 1 m.y. apart. The first pulse, in the basal Hirnantian, has been linked to... Read More about Late Ordovician mass extinction caused by volcanism, warming, and anoxia, not cooling and glaciation.

A nutrient control on marine anoxia during the end-Permian mass extinction (2020)
Journal Article
Schobben, M., Foster, W. J., Sleveland, A. R., Zuchuat, V., Svensen, H., Planke, S., …Poulton, S. W. (2020). A nutrient control on marine anoxia during the end-Permian mass extinction. Nature Geoscience, https://doi.org/10.1038/s41561-020-0622-1

© 2020, The Author(s), under exclusive licence to Springer Nature Limited. Oxygen deprivation and hydrogen sulfide toxicity are considered potent kill mechanisms during the mass extinction just before the Permian–Triassic boundary (~251.9 million yea... Read More about A nutrient control on marine anoxia during the end-Permian mass extinction.

Phosphorus-cycle disturbances during the Late Devonian anoxic events (2019)
Journal Article
Percival, L., Bond, D. P., Rakociński, M., Marynowski, L., Hood, A. V., Adatte, T., …Föllmi, K. B. (2020). Phosphorus-cycle disturbances during the Late Devonian anoxic events. Global and planetary change, 184, Article 103070. https://doi.org/10.1016/j.gloplacha.2019.103070

The Late Devonian was marked by repeated faunal crises and episodes of geographically widespread marine anoxia, and featured one of the ‘Big Five’ mass extinctions of the Phanerozoic Aeon during the Frasnian–Famennian transition. However, the process... Read More about Phosphorus-cycle disturbances during the Late Devonian anoxic events.

The Capitanian (Guadalupian, Middle Permian) mass extinction in NW Pangea (Borup Fiord, Arctic Canada): A global crisis driven by volcanism and anoxia (2019)
Journal Article
Bond, D. P., Wignall, P. B., & Grasby, S. E. (2020). The Capitanian (Guadalupian, Middle Permian) mass extinction in NW Pangea (Borup Fiord, Arctic Canada): A global crisis driven by volcanism and anoxia. Geological Society of America Bulletin, 132(5-6), 931-942. https://doi.org/10.1130/B35281.1

Until recently, the biotic crisis that occurred within the Capitanian Stage (Middle Permian, ca. 262 Ma) was known only from equatorial (Tethyan) latitudes, and its global extent was poorly resolved. The discovery of a Boreal Capitanian crisis in Spi... Read More about The Capitanian (Guadalupian, Middle Permian) mass extinction in NW Pangea (Borup Fiord, Arctic Canada): A global crisis driven by volcanism and anoxia.

Global warming leads to Early Triassic nutrient stress across northern Pangea (2019)
Journal Article
Grasby, S. E., Knies, J., Beauchamp, B., Bond, D. P., Wignall, P., & Sun, Y. (2020). Global warming leads to Early Triassic nutrient stress across northern Pangea. Geological Society of America Bulletin, 132(5-6), 943-954. https://doi.org/10.1130/B32036.1

The largest extinction in Earth history, in the latest Permian, was followed throughout most of the Early Triassic by a prolonged period of ecologic recovery. What factors delayed biotic recovery are still under debate and partly revolve around impac... Read More about Global warming leads to Early Triassic nutrient stress across northern Pangea.

Controls on the formation of microbially induced sedimentary structures and biotic recovery in the Lower Triassic of Arctic Canada (2019)
Journal Article
Wignall, P., Bond, D. P., Grasby, S., Pruss, S., & Peakall, J. (2020). Controls on the formation of microbially induced sedimentary structures and biotic recovery in the Lower Triassic of Arctic Canada. Geological Society of America Bulletin, 132(5-6), 918-930. https://doi.org/10.1130/B35229.1

Microbially-induced sedimentary structures (MISS) are reportedly widespread in the Early Triassic and their occurrence is attributed to either the extinction of marine grazers (allowing mat preservation) during the Permo-Triassic mass extinction or t... Read More about Controls on the formation of microbially induced sedimentary structures and biotic recovery in the Lower Triassic of Arctic Canada.