Jing Li
Dynamic ocean redox conditions during the end-Triassic mass extinction: Evidence from pyrite framboids
Li, Jing; Song, Huyue; Tian, Li; Bond, David P.G.; Song, Haijun; Du, Yong; Zhang, Chi; Chu, Daoliang; Wignall, Paul B.; Tong, Jinnan
Authors
Huyue Song
Li Tian
David Bond D.Bond@hull.ac.uk
Palaeoenvironmental Scientist and Schools Liason Officer
Haijun Song
Yong Du
Chi Zhang
Daoliang Chu
Paul B. Wignall
Jinnan Tong
Abstract
The end-Triassic (∼201 Mya) records one of the five largest mass extinction events of the Phanerozoic. Extinction losses were coincident with large igneous province volcanism in the form of the Central Atlantic Magmatic Province (CAMP) and major carbon isotope excursions (CIEs), suggesting a link between these phenomena. Marine anoxia has been implicated as a causal factor in the crisis, but there remains some uncertainty regarding the role of marine redox changes in marine extinction phases because both intensity and duration of marine anoxia are poorly constrained. We employ high resolution pyrite framboid size-frequency analysis at two Triassic-Jurassic (Tr-J) boundary sections: Kuhjoch in Austria (the Tr-J Global Boundary Stratotype Section and Point; GSSP) and St. Audrie's Bay in England (former GSSP candidate) in order to further evaluate the role of marine anoxia in the end-Triassic mass extinction (ETME). The St. Audrie's Bay section records predominantly anoxic conditions punctuated by weakly oxygenated (dysoxic) conditions through the Tr-J transition, even during shallow-water intervals. Kuhjoch experienced both anoxic and dysoxic conditions during the ETME but became better oxygenated near the Tr-J boundary. Marine anoxia is therefore implicated in the extinction at both locations. A similar redox history is known from the Central European Basin, Western Tethys and Panthalassa, where marine anoxia developed in the lead up to the ETME prior to reoxygenation around the Tr-J boundary.
Citation
Li, J., Song, H., Tian, L., Bond, D. P., Song, H., Du, Y., Zhang, C., Chu, D., Wignall, P. B., & Tong, J. (2022). Dynamic ocean redox conditions during the end-Triassic mass extinction: Evidence from pyrite framboids. Global and planetary change, 218, Article 103981. https://doi.org/10.1016/j.gloplacha.2022.103981
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 26, 2022 |
Online Publication Date | Oct 30, 2022 |
Publication Date | Nov 1, 2022 |
Deposit Date | Nov 1, 2022 |
Publicly Available Date | Oct 31, 2023 |
Journal | Global and Planetary Change |
Print ISSN | 0921-8181 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 218 |
Article Number | 103981 |
DOI | https://doi.org/10.1016/j.gloplacha.2022.103981 |
Keywords | Marine anoxia; Central atlantic magmatic province; End-Triassic mass extinction; Pyrite framboids |
Public URL | https://hull-repository.worktribe.com/output/4110377 |
Additional Information | This article is maintained by: Elsevier; Article Title: Dynamic ocean redox conditions during the end-Triassic mass extinction: Evidence from pyrite framboids; Journal Title: Global and Planetary Change; CrossRef DOI link to publisher maintained version: https://doi.org/10.1016/j.gloplacha.2022.103981; Content Type: article; Copyright: © 2022 Elsevier B.V. All rights reserved. |
Files
Fig. 6
(446 Kb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/
Fig. 5
(453 Kb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/
Fig. 4
(397 Kb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/
Fig. 3
(427 Kb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/
Fig. 2
(428 Kb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/
Fig. 1
(482 Kb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/
Accepted manuscript
(1.8 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
Diachronous end-Permian terrestrial ecosystem collapse with its origin in wildfires
(2022)
Journal Article
Transient Permian-Triassic euxinia in the southern Panthalassa deep ocean
(2021)
Journal Article
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search