Skip to main content

Research Repository

Advanced Search

All Outputs (170)

Compact rover surveying and laser scanning for BIM development (2024)
Journal Article
Jafri, S. R. U. N., Hussain, S. M., Ahmed, A., Rizvi, S. A. H., Kazmi, K. H., & Iqbal, J. (2024). Compact rover surveying and laser scanning for BIM development. PLoS ONE, 19(3 March), Article e0301273. https://doi.org/10.1371/journal.pone.0301273

This paper presents a custom made small rover based surveying, mapping and building information modeling solution. Majority of the commercially available mobile surveying systems are larger in size which restricts their maneuverability in the targete... Read More about Compact rover surveying and laser scanning for BIM development.

Adaptive-optimal MIMO nonsingular terminal sliding mode control of twin-rotor helicopter system: meta-heuristics and super-twisting based control approach (2024)
Journal Article
Rezoug, A., Messah, A., Messaoud, W. A., Baizid, K., & Iqbal, J. (2024). Adaptive-optimal MIMO nonsingular terminal sliding mode control of twin-rotor helicopter system: meta-heuristics and super-twisting based control approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46(3), Article 162. https://doi.org/10.1007/s40430-024-04714-3

This research proposes a novel hybrid control technique based on nonsingular terminal sliding mode (NTSM) control, metaheuristic optimization algorithms and adaptive super-twisting based on Lyapunov stability analysis for controlling Quanser aero sim... Read More about Adaptive-optimal MIMO nonsingular terminal sliding mode control of twin-rotor helicopter system: meta-heuristics and super-twisting based control approach.

Nonlinear control of two-stage single-phase standalone photovoltaic system (2024)
Journal Article
Latif, A., Khan, L., Agha, S., Mumtaz, S., & Iqbal, J. (2024). Nonlinear control of two-stage single-phase standalone photovoltaic system. PLoS ONE, 19(2 February), Article 0297612. https://doi.org/10.1371/journal.pone.0297612

This paper presents a single-phase Photovoltaic (PV) inverter with its superior and robust control in a standalone mode. Initially, modeling and layout of the Buck-Boost DC-DC converter by adopting a non-linear Robust Integral Back-stepping controlle... Read More about Nonlinear control of two-stage single-phase standalone photovoltaic system.

Passivity-based Rieman Liouville fractional order sliding mode control of three phase inverter in a grid-connected photovoltaic system (2024)
Journal Article
Khan, L., Khan, L., Agha, S., Hafeez, K., & Iqbal, J. (2024). Passivity-based Rieman Liouville fractional order sliding mode control of three phase inverter in a grid-connected photovoltaic system. PLoS ONE, 19(2 February), Article e0296797. https://doi.org/10.1371/journal.pone.0296797

Photovoltaic (PV) system parameters are always non-linear due to variable environmental conditions. The Maximum power point tracking (MPPT) is difficult under multiple uncertainties, disruptions and the occurrence of time-varying stochastic condition... Read More about Passivity-based Rieman Liouville fractional order sliding mode control of three phase inverter in a grid-connected photovoltaic system.

Robust GDI-based adaptive recursive sliding mode control (RGDI-ARSMC) for a highly nonlinear MIMO system with varying dynamics of UAV (2024)
Journal Article
Abbas, N., Liu, X., & Iqbal, J. (2024). Robust GDI-based adaptive recursive sliding mode control (RGDI-ARSMC) for a highly nonlinear MIMO system with varying dynamics of UAV. Journal of mechanical science and technology, 38(3), https://doi.org/10.1007/s12206-024-0234-6

The novelty of the proposed work lies in the control technique, referred to as the robust generalized dynamic inversion based adaptive recursive sliding mode control (RGDI-ARSMC), for addressing various challenges to control a highly coupled and pert... Read More about Robust GDI-based adaptive recursive sliding mode control (RGDI-ARSMC) for a highly nonlinear MIMO system with varying dynamics of UAV.

Phase-Based Adaptive Fractional LQR for Inverted-Pendulum-Type Robots: Formulation and Verification (2024)
Journal Article
Saleem, O., & Iqbal, J. (2024). Phase-Based Adaptive Fractional LQR for Inverted-Pendulum-Type Robots: Formulation and Verification. IEEE Access, 12, 93185-93196. https://doi.org/10.1109/ACCESS.2024.3415494

The underlying principles of inverted pendulums are widely applied to develop stabilization control strategies for under-actuated robotic systems in various applications. This article methodically designs an adaptive fractional-order linear quadratic... Read More about Phase-Based Adaptive Fractional LQR for Inverted-Pendulum-Type Robots: Formulation and Verification.

Experimental development of lightweight manipulators with improved design cycle time that leverages off-the-shelf robotic arm components (2024)
Journal Article
Abbas, M. R., Ahsan, M., & Iqbal, J. (2024). Experimental development of lightweight manipulators with improved design cycle time that leverages off-the-shelf robotic arm components. PLoS ONE, 19(7), Article e0305379. https://doi.org/10.1371/journal.pone.0305379

The growing market for lightweight robots inspires new use-cases, such as collaborative manipulators for human-centered automation. However, widespread adoption faces obstacles due to high R&D costs and longer design cycles, although rapid advances i... Read More about Experimental development of lightweight manipulators with improved design cycle time that leverages off-the-shelf robotic arm components.

Robust CNN architecture for classification of reach and grasp actions from neural correlates: an edge device perspective (2023)
Journal Article
Sultan, H., Ijaz, H., Waris, A., Mushtaq, S., Mushtaq, K., Khan, N. B., Khan, S. G., Tlija, M., & Iqbal, J. (2024). Robust CNN architecture for classification of reach and grasp actions from neural correlates: an edge device perspective. Measurement Science and Technology, 35(3), Article 035703. https://doi.org/10.1088/1361-6501/ad1157

Brain-computer interfaces (BCIs) systems traditionally use machine learning (ML) algorithms that require extensive signal processing and feature extraction. Deep learning (DL)-based convolutional neural networks (CNNs) recently achieved state-of-the-... Read More about Robust CNN architecture for classification of reach and grasp actions from neural correlates: an edge device perspective.

Adaptive optimal control of under-actuated robotic systems using a self-regulating nonlinear weight-adjustment scheme: Formulation and experimental verification (2023)
Journal Article
Saleem, O., Rizwan, M., & Iqbal, J. (2023). Adaptive optimal control of under-actuated robotic systems using a self-regulating nonlinear weight-adjustment scheme: Formulation and experimental verification. PLoS ONE, 18(12), Article e0295153. https://doi.org/10.1371/journal.pone.0295153

This paper formulates an innovative model-free self-organizing weight adaptation that strengthens the robustness of a Linear Quadratic Regulator (LQR) for inverted pendulum-like mechatronic systems against perturbations and parametric uncertainties.... Read More about Adaptive optimal control of under-actuated robotic systems using a self-regulating nonlinear weight-adjustment scheme: Formulation and experimental verification.

Breaking barriers in higher education: Implementation of cost-effective social constructivism in engineering education (2023)
Journal Article
Khalid, A., Kazim, T., Diaz, K. R. V., & Iqbal, J. (in press). Breaking barriers in higher education: Implementation of cost-effective social constructivism in engineering education. International Journal of Mechanical Engineering Education, https://doi.org/10.1177/03064190231218123

Social constructivism is considered the main driver of curriculum overhaul for the new set of learning in the digital age. Implementation of cost-effective solutions of social constructivism in higher education is a challenge. The paper circumnavigat... Read More about Breaking barriers in higher education: Implementation of cost-effective social constructivism in engineering education.

Investigation of vibration’s effect on driver in optimal motion cueing algorithm (2023)
Journal Article
Ahmad, H., Tariq, M., Yasin, A., Razzaq, S., Chaudhry, M. A., Shaikh, I. U. H., Ali, A., Qaisar, S. M., & Iqbal, J. (2023). Investigation of vibration’s effect on driver in optimal motion cueing algorithm. PLoS ONE, 18(11 November), Article e0290705. https://doi.org/10.1371/journal.pone.0290705

The increased sensation error between the surroundings and the driver is a major problem in driving simulators, resulting in unrealistic motion cues. Intelligent control schemes have to be developed to provide realistic motion cues to the driver. The... Read More about Investigation of vibration’s effect on driver in optimal motion cueing algorithm.

A Nonlinear Model Predictive Controller for Trajectory Planning of Skid-Steer Mobile Robots in Agricultural Environments (2023)
Presentation / Conference Contribution
Aro, K., Urvina, R., Deniz, N. N., Menendez, O., Iqbal, J., & Prado, A. (2023, September). A Nonlinear Model Predictive Controller for Trajectory Planning of Skid-Steer Mobile Robots in Agricultural Environments. Presented at 2023 IEEE Conference on AgriFood Electronics (CAFE), Torino, Italy

This research presents an integrated trajectory planning strategy with a motion control approach using a Nonlinear Model Predictive Control (NMPC) framework for Skid-Steer Mobile Robots (SSMRs) in agricultural scenarios. In a single architecture, the... Read More about A Nonlinear Model Predictive Controller for Trajectory Planning of Skid-Steer Mobile Robots in Agricultural Environments.

EMG Controlled Modular Prosthetic Hand–Design and Prototyping (2023)
Book Chapter
Suddaby, A., & Iqbal, J. (2023). EMG Controlled Modular Prosthetic Hand–Design and Prototyping. In X.-S. Yang, R. S. Sherratt, N. Dey, & A. Joshi (Eds.), Proceedings of Eighth International Congress on Information and Communication Technology : ICICT 2023 (97-107). Springer. https://doi.org/10.1007/978-981-99-3043-2_8

Prosthetic hands can be essential for those without a biological hand(s) to accomplish everyday tasks but the cost, of up to tens of thousands, keeps them out of reach for many people. This paper reports on the development of a low-cost affordable an... Read More about EMG Controlled Modular Prosthetic Hand–Design and Prototyping.

A novel class of adaptive observers for dynamic nonlinear uncertain systems (2023)
Journal Article
Alkhayyat, A., Zalzala, A. M., AL-Salih, A. A., Jawad, A. J. A. M., Abdul-Adheem, W. R., Iqbal, J., Ibraheem, I. K., Ibrahim, W. K., Jaber, M. M., & Hameed, A. S. (in press). A novel class of adaptive observers for dynamic nonlinear uncertain systems. Expert Systems, https://doi.org/10.1111/exsy.13412

Numerous techniques have been proposed in the literature to improve the performance of high-gain observers with noisy measurements. One such technique is the linear extended state observer, which is used to estimate the system's states and to account... Read More about A novel class of adaptive observers for dynamic nonlinear uncertain systems.

Modelling and robust controller design for an underactuated self-balancing robot with uncertain parameter estimation (2023)
Journal Article
Choudhry, O. A., Wasim, M., Ali, A., Choudhry, M. A., & Iqbal, J. (2023). Modelling and robust controller design for an underactuated self-balancing robot with uncertain parameter estimation. PLoS ONE, 18(8), e0285495. https://doi.org/10.1371/journal.pone.0285495

A comprehensive literature review of self-balancing robot (SBR) provides an insight to the strengths and limitations of the available control techniques for different applications. Most of the researchers have not included the payload and its variati... Read More about Modelling and robust controller design for an underactuated self-balancing robot with uncertain parameter estimation.

Adaptive Backstepping Integral Sliding Mode Control of a MIMO Separately Excited DC Motor (2023)
Journal Article
Afifa, R., Ali, S., Pervaiz, M., & Iqbal, J. (2023). Adaptive Backstepping Integral Sliding Mode Control of a MIMO Separately Excited DC Motor. Robotics, 12(4), Article 105. https://doi.org/10.3390/robotics12040105

This research proposes a robust nonlinear hybrid control approach to the speed control of a multi-input-and-multi-output separately excited DC motor (SEDCM). The motor that was under consideration experienced parametric uncertainties and load disturb... Read More about Adaptive Backstepping Integral Sliding Mode Control of a MIMO Separately Excited DC Motor.

Robust MPPT Control of Stand-Alone Photovoltaic Systems via Adaptive Self-Adjusting Fractional Order PID Controller (2023)
Journal Article
Saleem, O., Ali, S., & Iqbal, J. (2023). Robust MPPT Control of Stand-Alone Photovoltaic Systems via Adaptive Self-Adjusting Fractional Order PID Controller. Energies, 16(13), Article 5039. https://doi.org/10.3390/en16135039

The Photovoltaic (PV) system is an eco-friendly renewable energy system that is integrated with a DC-DC buck-boost converter to generate electrical energy as per the variations in solar irradiance and outdoor temperature. This article proposes a nove... Read More about Robust MPPT Control of Stand-Alone Photovoltaic Systems via Adaptive Self-Adjusting Fractional Order PID Controller.

Development of CAVLAB—A Control-Oriented MATLAB Based Simulator for an Underground Coal Gasification Process (2023)
Journal Article
Ahmed, A., Javed, S. B., Uppal, A. A., & Iqbal, J. (2023). Development of CAVLAB—A Control-Oriented MATLAB Based Simulator for an Underground Coal Gasification Process. Mathematics, 11(11), Article 2493. https://doi.org/10.3390/math11112493

The Cavity Simulation Model (CAVSIM) is a 3D, parameterisable simulator of the Underground Coal Gasification Process (UCG) that serves as a benchmark for UCG prediction. Despite yielding accurate outputs, CAVSIM has some limitations, which chiefly in... Read More about Development of CAVLAB—A Control-Oriented MATLAB Based Simulator for an Underground Coal Gasification Process.

Design and Adaptive Compliance Control of a Wearable Walk Assist Device (2023)
Presentation / Conference Contribution
Shah, S. H., Alam, M. S., Arsalan, M., Ul Haq, I., Khan, S. G., & Iqbal, J. (2023, March). Design and Adaptive Compliance Control of a Wearable Walk Assist Device. Presented at 2023 International Conference on Robotics and Automation in Industry (ICRAI), Peshawar, Pakistan

The ability to walk independently is a predominant feature that human beings are bestowed with by nature. People with moving disabilities face many challenges in day-to-day activities and they have to rely on others to perform their day-to-day activi... Read More about Design and Adaptive Compliance Control of a Wearable Walk Assist Device.