Skip to main content

Research Repository

Advanced Search

All Outputs (6)

Addressing delays to treatment in patients with chronic limb-threatening ischaemia (2023)
Thesis
Birmpili, P. (2023). Addressing delays to treatment in patients with chronic limb-threatening ischaemia. (Thesis). Hull York Medical School. https://hull-repository.worktribe.com/output/4371299

Patients with CLTI often face long delays from referral to the vascular surgery service and hospital admission to revascularisation, and there is limited evidence on the effect of these delays on patient outcomes. This thesis aims to identify factors... Read More about Addressing delays to treatment in patients with chronic limb-threatening ischaemia.

Platelet releasate normalises the compromised muscle regeneration in a mouse model of hyperlipidaemia (2021)
Journal Article
Barlow, J., Sfyri, P. P., Mitchell, R., Verpoorten, S., Scully, D., Andreou, C., Papadopoulos, P., Patel, K., & Matsakas, A. (2021). Platelet releasate normalises the compromised muscle regeneration in a mouse model of hyperlipidaemia. Experimental Physiology, 106(3), 700-713. https://doi.org/10.1113/ep088937

Muscle satellite cells are important stem cells for skeletal muscle regeneration and repair after injury. ApoE‐deficient mice, an established mouse model of hyperlipidaemia and atherosclerosis, show evidence of oxidative stress‐induced lesions and fa... Read More about Platelet releasate normalises the compromised muscle regeneration in a mouse model of hyperlipidaemia.

Optimising platelet secretomes to deliver robust tissue-specific regeneration (2019)
Journal Article
Scully, D., Sfyri, P., Wilkinson, H. N., Acebes‐Huerta, A., Verpoorten, S., Muñoz‐Turrillas, M. C., Parnell, A., Patel, K., Hardman, M. J., Gutiérrez, L., & Matsakas, A. (2020). Optimising platelet secretomes to deliver robust tissue-specific regeneration. Journal of tissue engineering and regenerative medicine, 14(1), 82-98. https://doi.org/10.1002/term.2965

Promoting cell proliferation is the cornerstone of most tissue regeneration therapies. As platelet-based applications promote cell division and can be customised for tissue-specific efficacy, this makes them strong candidates for developing novel reg... Read More about Optimising platelet secretomes to deliver robust tissue-specific regeneration.

Loss of CD36 protects against diet-induced obesity but results in impaired muscle stem cell function, delayed muscle regeneration and hepatic steatosis (2019)
Journal Article
Verpoorten, S., Sfyri, P., Scully, D., Mitchell, R., Tzimou, A., Mougios, V., Patel, K., & Matsakas, A. (2020). Loss of CD36 protects against diet-induced obesity but results in impaired muscle stem cell function, delayed muscle regeneration and hepatic steatosis. Acta Physiologica, 228(3), https://doi.org/10.1111/apha.13395

Aim: The prevalence of obesity is a major risk factor for cardiovascular and metabolic diseases including impaired skeletal muscle regeneration. Since skeletal muscle regenerative capacity is regulated by satellite cells, we aimed to investigate whet... Read More about Loss of CD36 protects against diet-induced obesity but results in impaired muscle stem cell function, delayed muscle regeneration and hepatic steatosis.

The inhibitory subunit of cardiac troponin (cTnI) is modified by arginine methylation in the human heart (2019)
Journal Article
Onwuli, D. O., Samuel, S., Sfyri, P., Welham, K., Goddard, M., Abu-Omar, Y., Loubani, M., Rivero, F., Matsakas, A., Benoit, D. M., Wade, M., Greenman, J., & Beltran-Alvarez, P. (2019). The inhibitory subunit of cardiac troponin (cTnI) is modified by arginine methylation in the human heart. International journal of cardiology, 282, 76-80. https://doi.org/10.1016/j.ijcard.2019.01.102

Background
The inhibitory subunit of cardiac troponin (cTnI) is a gold standard cardiac biomarker and also an essential protein in cardiomyocyte excitation-contraction coupling. The interactions of cTnI with other proteins are fine-tuned by post-tra... Read More about The inhibitory subunit of cardiac troponin (cTnI) is modified by arginine methylation in the human heart.

Attenuation of oxidative stress-induced lesions in skeletal muscle in a mouse model of obesity-independent hyperlipidaemia and atherosclerosis through the inhibition of Nox2 activity (2018)
Journal Article
Sfyri, P. P., Yuldasheva, N. Y., Tzimou, A., Giallourou, N., Crispi, V., Aburima, A., Beltran-Alvarez, P., Patel, K., Mougios, V., Swann, J. R., Kearney, M. T., & Matsakas, A. (2018). Attenuation of oxidative stress-induced lesions in skeletal muscle in a mouse model of obesity-independent hyperlipidaemia and atherosclerosis through the inhibition of Nox2 activity. Free radical biology & medicine, 129, 504-519. https://doi.org/10.1016/j.freeradbiomed.2018.10.422

Obesity leading to hyperlipidaemia and atherosclerosis is recognised to induce morphological and metabolic changes in many tissues. However, hyperlipidaemia can occur in the absence of obesity. The impact of the latter scenario on skeletal muscle and... Read More about Attenuation of oxidative stress-induced lesions in skeletal muscle in a mouse model of obesity-independent hyperlipidaemia and atherosclerosis through the inhibition of Nox2 activity.