Skip to main content

Research Repository

Advanced Search

All Outputs (636)

Robust Integral Sliding Mode Control Design for Stability Enhancement of Under-actuated Quadcopter (2020)
Journal Article
Ullah, S., Mehmood, A., Khan, Q., Rehman, S., & Iqbal, J. (2020). Robust Integral Sliding Mode Control Design for Stability Enhancement of Under-actuated Quadcopter. International journal of control, automation and systems, 18(7), 1671-1678. https://doi.org/10.1007/s12555-019-0302-3

In this paper, a robust backstepping integral sliding mode control (RBISMC) technique is designed for the flight control of a quadcopter, which is an under-actuated nonlinear system. First, the mathematical model of this highly coupled and under-actu... Read More about Robust Integral Sliding Mode Control Design for Stability Enhancement of Under-actuated Quadcopter.

Estimation of Surgical Needle Insertion Force Using Kalman Filter (2020)
Journal Article
Jafri, S. R. U. N., Jamshaid, A., Jafri, S. M. U. N., & Iqbal, J. (2020). Estimation of Surgical Needle Insertion Force Using Kalman Filter. Journal of Electrical Engineering & Technology, 15(2), 899-906. https://doi.org/10.1007/s42835-020-00355-3

This paper presents a novel low-cost technique to measure the insertion force of a surgical needle on a testing surface to check needle strength. A combination of a load cell with a current sensor for a linear DC motor has been used to estimate the i... Read More about Estimation of Surgical Needle Insertion Force Using Kalman Filter.

On the improvement of calibration accuracy of parallel robots - Modeling and optimization (2020)
Journal Article
Bentaleb, T., & Iqbal, J. (2020). On the improvement of calibration accuracy of parallel robots - Modeling and optimization. Journal of Theoretical and Applied Mechanics (Poland), 58(1), 261-272. https://doi.org/10.15632/JTAM-PL/115863

This paper proposes kinematic based calibration methods for Delta parallel robots. The boundary of the robot workspace is computed using a forward kinematic model. Influence of errors in kinematic parameters on the workspace boundaries is investigate... Read More about On the improvement of calibration accuracy of parallel robots - Modeling and optimization.

Validation of in-house knowledge-based planning model for advance-stage lung cancer patients treated using VMAT radiotherapy (2020)
Journal Article
Tambe, N., Pires, I. M., Moore, C., Cawthorne, C., & Beavis, A. (2020). Validation of in-house knowledge-based planning model for advance-stage lung cancer patients treated using VMAT radiotherapy. British Journal of Radiology, 93(1106), https://doi.org/10.1259/bjr.20190535

Objectives: Radiotherapy plan quality may vary considerably depending on planner's experience and time constraints. The variability in treatment plans can be assessed by calculating the difference between achieved and the optimal dose distribution. T... Read More about Validation of in-house knowledge-based planning model for advance-stage lung cancer patients treated using VMAT radiotherapy.

Rigid 3d registration algorithm for localization of the vertebral centroids in 3d deformity models of adolescent idiopathic scoliosis (2020)
Journal Article
Ćuković, S. M., Taylor, W., Luković, V., Ghionea, I., Baizid, K., Iqbal, J., & Karuppasamy, S. (2020). Rigid 3d registration algorithm for localization of the vertebral centroids in 3d deformity models of adolescent idiopathic scoliosis. Computer-Aided Design and Applications, 17(6), 1313-1325. https://doi.org/10.14733/cadaps.2020.1313-1325

In this paper, we developed a methodology for a non-invasive 3D diagnosis based on a digitized dorsal surface of the patient enabling assessment and monitoring of Adolescent Idiopathic Scoliosis (AIS). We applied a novel 3D registration algorithm, wh... Read More about Rigid 3d registration algorithm for localization of the vertebral centroids in 3d deformity models of adolescent idiopathic scoliosis.

Developing a Semantic-Driven Hybrid Segmentation Method for Point Clouds of 3D Shapes (2020)
Journal Article
Yang, X., Han, X., Li, Q., He, L., Pang, M., & Jia, C. (2020). Developing a Semantic-Driven Hybrid Segmentation Method for Point Clouds of 3D Shapes. IEEE Access, 8, 40861-40880. https://doi.org/10.1109/ACCESS.2020.2976847

With the rapid development of point cloud processing technologies and the availability of a wide range of 3D capturing devices, a geometric object from the real world can be directly represented digitally as a dense and fine point cloud. Decomposing... Read More about Developing a Semantic-Driven Hybrid Segmentation Method for Point Clouds of 3D Shapes.

Robust Sliding Mode Control for Flexible Joint Robotic Manipulator via Disturbance Observer (2019)
Journal Article
Alam, W., Ahmad, S., Mehmood, A., & Iqbal, J. (2019). Robust Sliding Mode Control for Flexible Joint Robotic Manipulator via Disturbance Observer. Interdisciplinary Description of Complex Systems, 17(1), 85-97. https://doi.org/10.7906/indecs.17.1.11

In a flexible joint robotic manipulator, parametric variations and external disturbances result in mismatch uncertainties thus posing a great challenge in terms of manipulator’s control. This article investigates non-linear control algorithms for des... Read More about Robust Sliding Mode Control for Flexible Joint Robotic Manipulator via Disturbance Observer.

Patient-Specific Coronary Artery 3D Printing Based on Intravascular Optical Coherence Tomography and Coronary Angiography (2019)
Journal Article
Huang, C., Lan, Y., Chen, S., Liu, Q., Luo, X., Xu, G., …Che, W. (2019). Patient-Specific Coronary Artery 3D Printing Based on Intravascular Optical Coherence Tomography and Coronary Angiography. Complexity, 2019, 1-10. https://doi.org/10.1155/2019/5712594

Despite the new ideas were inspired in medical treatment by the rapid advancement of three-dimensional (3D) printing technology, there is still rare research work reported on 3D printing of coronary arteries being documented in the literature. In thi... Read More about Patient-Specific Coronary Artery 3D Printing Based on Intravascular Optical Coherence Tomography and Coronary Angiography.

Towards infield, live plant phenotyping using a reduced-parameter CNN (2019)
Journal Article
Atanbori, J., French, A. P., & Pridmore, T. P. (2020). Towards infield, live plant phenotyping using a reduced-parameter CNN. Machine Vision and Applications, 31(1), Article 2. https://doi.org/10.1007/s00138-019-01051-7

© 2019, The Author(s). There is an increase in consumption of agricultural produce as a result of the rapidly growing human population, particularly in developing nations. This has triggered high-quality plant phenotyping research to help with the br... Read More about Towards infield, live plant phenotyping using a reduced-parameter CNN.

Natural Language Generation for Operations and Maintenance in Wind Turbines (2019)
Presentation / Conference
Chatterjee, J., & Dethlefs, N. (2019, December). Natural Language Generation for Operations and Maintenance in Wind Turbines. Paper presented at NeurIPS 2019 Workshop: Tackling Climate Change with Machine Learning, Vancouver Convention Center, British Columbia, Canada

Wind energy is one of the fastest-growing sustainable energy sources in the world but relies crucially on efficient and effective operations and maintenance to generate sufficient amounts of energy and reduce downtime of wind turbines and associated... Read More about Natural Language Generation for Operations and Maintenance in Wind Turbines.

Robotics Inspired Renewable Energy Developments: Prospective Opportunities and Challenges (2019)
Journal Article
Iqbal, J., Al-Zahrani, A., Alharbi, S. A., & Hashmi, A. (2019). Robotics Inspired Renewable Energy Developments: Prospective Opportunities and Challenges. IEEE Access, 7, 174898-174923. https://doi.org/10.1109/ACCESS.2019.2957013

The domain of Robotics is a good partner of renewable energy and is becoming critical to the sustainability and survival of the energy industry. The multi-disciplinary nature of robots offers precision, repeatability, reliability, productivity and in... Read More about Robotics Inspired Renewable Energy Developments: Prospective Opportunities and Challenges.

An IoT-Based Framework of Webvr Visualization for Medical Big Data in Connected Health (2019)
Journal Article
Xu, G., Lan, Y., Zhou, W., Huang, C., Li, W., Zhang, W., …Che, W. (2019). An IoT-Based Framework of Webvr Visualization for Medical Big Data in Connected Health. IEEE Access, 7, 173866-173874. https://doi.org/10.1109/ACCESS.2019.2957149

Recently, telemedicine has been widely applied in remote diagnosis, treatment and counseling, where the Internet of Things (IoT) technology plays an important role. In the process of telemedicine, data are collected from remote medical equipment, suc... Read More about An IoT-Based Framework of Webvr Visualization for Medical Big Data in Connected Health.

Convolutional Neural Net-Based Cassava Storage Root Counting Using Real and Synthetic Images (2019)
Journal Article
Atanbori, J., Montoya, M., Selvaraj, M. G., French, A. P., & Pridmore, T. P. (2019). Convolutional Neural Net-Based Cassava Storage Root Counting Using Real and Synthetic Images. Frontiers in Plant Science, 10, Article 1516. https://doi.org/10.3389/fpls.2019.01516

© Copyright © 2019 Atanbori, Montoya-P, Selvaraj, French and Pridmore. Cassava roots are complex structures comprising several distinct types of root. The number and size of the storage roots are two potential phenotypic traits reflecting crop yield... Read More about Convolutional Neural Net-Based Cassava Storage Root Counting Using Real and Synthetic Images.

A low-cost aeroponic phenotyping system for storage root development: unravelling the below-ground secrets of cassava (Manihot esculenta) (2019)
Journal Article
Selvaraj, M. G., Montoya-P, M. E., Atanbori, J., French, A. P., & Pridmore, T. (2019). A low-cost aeroponic phenotyping system for storage root development: unravelling the below-ground secrets of cassava (Manihot esculenta). Plant Methods, 15(1), https://doi.org/10.1186/s13007-019-0517-6

© 2019 The Author(s). Background: Root and tuber crops are becoming more important for their high source of carbohydrates, next to cereals. Despite their commercial impact, there are significant knowledge gaps about the environmental and inherent reg... Read More about A low-cost aeroponic phenotyping system for storage root development: unravelling the below-ground secrets of cassava (Manihot esculenta).

An enhanced secure delegation-based anonymous authentication protocol for PCSs (2019)
Journal Article
Gope, P., Ghayvat, H., Cheng, Y., & Kabir, S. (2019). An enhanced secure delegation-based anonymous authentication protocol for PCSs. International Journal of Communication Systems, Article e4199. https://doi.org/10.1002/dac.4199

Rapid development of wireless networks brings about many security problems in portable communication systems (PCSs), which can provide mobile users with an opportunity to enjoy global roaming services. In this regard, designing a secure user authenti... Read More about An enhanced secure delegation-based anonymous authentication protocol for PCSs.

A runtime safety analysis concept for open adaptive systems (2019)
Journal Article
Kabir, S., Sorokos, I., Aslansefat, K., Papadopoulos, Y., Gheraibia, Y., Reich, J., …Wei, R. (2019). A runtime safety analysis concept for open adaptive systems. Lecture notes in computer science, 11842, 332-346. https://doi.org/10.1007/978-3-030-32872-6_22

© Springer Nature Switzerland AG 2019. In the automotive industry, modern cyber-physical systems feature cooperation and autonomy. Such systems share information to enable collaborative functions, allowing dynamic component integration and architectu... Read More about A runtime safety analysis concept for open adaptive systems.

Adaptive Backstepping Based Sensor and Actuator Fault Tolerant Control of a Manipulator (2019)
Journal Article
Awan, Z. S., Ali, K., Iqbal, J., & Mehmood, A. (2019). Adaptive Backstepping Based Sensor and Actuator Fault Tolerant Control of a Manipulator. Journal of Electrical Engineering & Technology, 14(6), 2497-2504. https://doi.org/10.1007/s42835-019-00277-9

The purpose of this research is to propose and design fault tolerant control (FTC) scheme for a robotic manipulator, to increase its reliability and performance in the presence of actuator and sensor faults. To achieve the said objectives, a hybrid c... Read More about Adaptive Backstepping Based Sensor and Actuator Fault Tolerant Control of a Manipulator.

A conceptual framework to incorporate complex basic events in HiP-HOPS (2019)
Book Chapter
Kabir, S., Aslansefat, K., Sorokos, I., Papadopoulos, Y., & Gheraibia, Y. (2019). A conceptual framework to incorporate complex basic events in HiP-HOPS. In Y. Papadopoulos, K. Aslansefat, P. Katsaros, & M. Bozzano (Eds.), Model-Based Safety and Assessment. IMBSA 2019 (109-124). Cham: Springer Verlag. https://doi.org/10.1007/978-3-030-32872-6_8

Reliability evaluation for ensuring the uninterrupted system operation is an integral part of dependable system development. Model-based safety analysis (MBSA) techniques such as Hierarchically Performed Hazard Origin and Propagation Studies (HiP-HOP... Read More about A conceptual framework to incorporate complex basic events in HiP-HOPS.

Modeling and Robust Control of Twin Rotor MIMO System (2019)
Conference Proceeding
Shah, S. H., Khan, S. G., Iqbal, J., & Alharthi, M. (2019). Modeling and Robust Control of Twin Rotor MIMO System. In International Conference on Robotics and Automation in Industry (ICRAI). https://doi.org/10.1109/ICRAI47710.2019.8967355

Recently, unmanned aerial vehicles (UAVs) have witnessed immense popularity in various fields, ranging from surveillance, rescue, and fire fighting to other more sophisticated military and commercial applications. However, due to their highly nonline... Read More about Modeling and Robust Control of Twin Rotor MIMO System.