Skip to main content

Research Repository

Advanced Search

Validation of in-house knowledge-based planning model for advance-stage lung cancer patients treated using VMAT radiotherapy

Tambe, Nilesh; Pires, Isabel M.; Moore, Craig; Cawthorne, Christopher; Beavis, Andy

Authors

Nilesh Tambe

Isabel M. Pires

Craig Moore

Christopher Cawthorne



Abstract

Objectives: Radiotherapy plan quality may vary considerably depending on planner's experience and time constraints. The variability in treatment plans can be assessed by calculating the difference between achieved and the optimal dose distribution. The achieved treatment plans may still be suboptimal if there is further scope to reduce organs-at- risk doses without compromising target coverage and deliverability. This study aims to develop a knowledge-based planning (KBP) model to reduce variability of volumetric modulated arc therapy (VMAT) lung plans by predicting minimum achievable lung volume-dose metrics. Methods: Dosimetric and geometric data collected from 40 retrospective plans were used to develop KBP models aiming to predict the minimum achievable lung dose metrics via calculating the ratio of the residual lung volume to the total lung volume. Model accuracy was verified by replanning 40 plans. Plan complexity metrics were calculated using locally developed script and their effect on treatment delivery was assessed via measurement. Results: The use of KBP resulted in significant reduction in plan variability in all three studied dosimetric parameters V5, V20 and mean lung dose by 4.9% (p = 0.007, 10.8 to 5.9%), 1.3% (p = 0.038, 4.0 to 2.7%) and 0.9 Gy (p = 0.012, 2.5 to 1.6Gy), respectively. It also increased lung sparing without compromising the overall plan quality. The accuracy of the model was proven as clinically acceptable. Plan complexity increased compared to original plans; however, the implication on delivery errors was clinically insignificant as demonstrated by plan verification measurements. Conclusion: Our in-house model for VMAT lung plans led to a significant reduction in plan variability with concurrent decrease in lung dose. Our study also demonstrated that treatment delivery verifications are important prior to clinical implementation of KBP models. Advances in knowledge: In-house KBP models can predict minimum achievable lung dose-volume constraints for advance-stage lung cancer patients treated with VMAT. The study demonstrates that plan complexity could increase and should be assessed prior to clinical implementation.

Citation

Tambe, N., Pires, I. M., Moore, C., Cawthorne, C., & Beavis, A. (2020). Validation of in-house knowledge-based planning model for advance-stage lung cancer patients treated using VMAT radiotherapy. British Journal of Radiology, 93(1106), https://doi.org/10.1259/bjr.20190535

Journal Article Type Article
Acceptance Date Dec 12, 2019
Online Publication Date Jan 6, 2020
Publication Date 2020
Deposit Date Dec 12, 2019
Publicly Available Date Jan 7, 2021
Journal British Journal of Radiology
Print ISSN 0007-1285
Electronic ISSN 1748-880X
Publisher British Institute of Radiology
Peer Reviewed Peer Reviewed
Volume 93
Issue 1106
DOI https://doi.org/10.1259/bjr.20190535
Public URL https://hull-repository.worktribe.com/output/3316575
Publisher URL https://www.birpublications.org/doi/10.1259/bjr.20190535

Files





You might also like



Downloadable Citations