Skip to main content

Research Repository

Advanced Search

All Outputs (87)

Asymmetric effects of a modelled tidal turbine on the flow and seabed (2020)
Journal Article
Ramírez -Mendoza, R., Murdoch, L., Jordan, L. B., Amoudry, L. O., McLelland, S., Cooke, R. D., …Vezza, M. (2020). Asymmetric effects of a modelled tidal turbine on the flow and seabed. Renewable energy, 159, 238-249. https://doi.org/10.1016/j.renene.2020.05.133

The extraction of power from the flow of water has become an important potential source of clean energy. In spite of significant interest in the interaction between energy extraction devices and water currents, comparatively little work has focused o... Read More about Asymmetric effects of a modelled tidal turbine on the flow and seabed.

Efficient preservation of young terrestrial organic carbon in sandy turbidity-current deposits (2020)
Journal Article
Hage, S., Galy, V. V., Cartigny, M. J., Acikalin, S., Clare, M. A., Gröcke, D. R., …Talling, P. J. (2020). Efficient preservation of young terrestrial organic carbon in sandy turbidity-current deposits. Geology, 48(9), 882-887. https://doi.org/10.1130/G47320.1

Burial of terrestrial biospheric particulate organic carbon in marine sediments removes CO2 from the atmosphere, regulating climate over geologic time scales. Rivers deliver terrestrial organic carbon to the sea, while turbidity currents transport ri... Read More about Efficient preservation of young terrestrial organic carbon in sandy turbidity-current deposits.

Direct evidence of a high-concentration basal layer in a submarine turbidity current (2020)
Journal Article
Maier, K. L., Paull, C. K., Cartigny, M. J., Simmons, S. M., Talling, P. J., Wang, Z., …Parsons, D. R. (in press). Direct evidence of a high-concentration basal layer in a submarine turbidity current. Deep Sea Research Part I: Oceanographic Research Papers, Article 103300. https://doi.org/10.1016/j.dsr.2020.103300

Submarine turbidity currents are one of the most important sediment transfer processes on earth. Yet the fundamental nature of turbidity currents is still debated; especially whether they are entirely dilute and turbulent, or a thin and dense basal l... Read More about Direct evidence of a high-concentration basal layer in a submarine turbidity current.

Novel acoustic method provides first detailed measurements of sediment concentration structure within submarine turbidity currents (2020)
Journal Article
Simmons, S. M., Azpiroz-Zabala, M., Cartigny, M. J. B., Clare, M. A., Cooper, C., Parsons, D. R., …Talling, P. J. (2020). Novel acoustic method provides first detailed measurements of sediment concentration structure within submarine turbidity currents. Journal of Geophysical Research: Oceans, 125(5), Article e2019JC015904. https://doi.org/10.1029/2019JC015904

Turbidity currents transport prodigious volumes of sediment to the deep-sea. But there are very few direct measurements from oceanic turbidity currents, ensuring they are poorly understood. Recent studies have used acoustic Doppler current profilers... Read More about Novel acoustic method provides first detailed measurements of sediment concentration structure within submarine turbidity currents.

Dunes in the world’s big rivers are characterized by low-angle lee-side slopes and a complex shape (2020)
Journal Article
Cisneros, J., Best, J., van Dijk, T., Almeida, R. P. D., Amsler, M., Boldt, J., …Zhang, Y. (2020). Dunes in the world’s big rivers are characterized by low-angle lee-side slopes and a complex shape. Nature Geoscience, 13(2), 156-162. https://doi.org/10.1038/s41561-019-0511-7

Dunes are present in all the worlds’ big rivers and form critical agents of bedload transport, constitute appreciable sources of bed roughness and flow resistance, and generate stratification that is the most common depositional element of ancient al... Read More about Dunes in the world’s big rivers are characterized by low-angle lee-side slopes and a complex shape.

What determines the downstream evolution of turbidity currents? (2019)
Journal Article
Heerema, C. J., Talling, P. J., Cartigny, M. J., Paull, C. K., Bailey, L., Simmons, S. M., …Pope, E. (2020). What determines the downstream evolution of turbidity currents?. Earth and planetary science letters, 532, Article 116023. https://doi.org/10.1016/j.epsl.2019.116023

© 2019 Seabed sediment flows called turbidity currents form some of the largest sediment accumulations, deepest canyons and longest channel systems on Earth. Only rivers transport comparable sediment volumes over such large areas; but there are far f... Read More about What determines the downstream evolution of turbidity currents?.

Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes (2019)
Journal Article
Hage, S., Cartigny, M. J. B., Sumner, E. J., Clare, M. A., Hughes Clarke, J., Talling, P. J., …Watts, C. (2019). Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes. Geophysical research letters, 46(20), 11310-11320. https://doi.org/10.1029/2019gl084526

©2019. The Authors. Rivers (on land) and turbidity currents (in the ocean) are the most important sediment transport processes on Earth. Yet how rivers generate turbidity currents as they enter the coastal ocean remains poorly understood. The current... Read More about Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes.

Sediment and organic carbon transport and deposition driven by internal tides along Monterey Canyon, offshore California (2019)
Journal Article
Maier, K. L., Rosenberger, K. J., Paull, C. K., Gwiazda, R., Gales, J., Lorenson, T., …Cartigny, M. J. (2019). Sediment and organic carbon transport and deposition driven by internal tides along Monterey Canyon, offshore California. Deep Sea Research Part I: Oceanographic Research Papers, 153, Article 103108. https://doi.org/10.1016/j.dsr.2019.103108

© 2019 Elsevier Ltd Submarine canyons are globally important conduits for sediment and organic carbon transport into the deep sea. Using a novel dataset from Monterey Canyon, offshore central California, that includes an extensive array of water colu... Read More about Sediment and organic carbon transport and deposition driven by internal tides along Monterey Canyon, offshore California.

Linking direct measurements of turbidity currents to submarine canyon-floor deposits (2019)
Journal Article
Maier, K. L., Gales, J. A., Paull, C. K., Rosenberger, K., Talling, P. J., Simmons, S. M., …Sumner, E. J. (2019). Linking direct measurements of turbidity currents to submarine canyon-floor deposits. Frontiers in Earth Science, 7, Article 144. https://doi.org/10.3389/feart.2019.00144

Submarine canyons are conduits for episodic and powerful sediment density flows (commonly called turbidity currents) that move globally significant amounts of terrestrial sediment and organic carbon into the deep sea, forming some of the largest sedi... Read More about Linking direct measurements of turbidity currents to submarine canyon-floor deposits.

Integrating field and laboratory approaches for ripple development in mixed sand–clay–EPS (2019)
Journal Article
Baas, J. H., Baker, M. L., Malarkey, J., Bass, S. J., Manning, A. J., Hope, J. A., …Thorne, P. D. (2019). Integrating field and laboratory approaches for ripple development in mixed sand–clay–EPS. Sedimentology, 66(7), 2749-2768. https://doi.org/10.1111/sed.12611

The shape and size of sedimentary bedforms play a key role in the reconstruction of sedimentary processes in modern and ancient environments. Recent laboratory experiments have shown that bedforms in mixed sand–clay develop at a slower rate and ofte... Read More about Integrating field and laboratory approaches for ripple development in mixed sand–clay–EPS.

Self-sharpening induces jet-like structure in seafloor gravity currents (2019)
Journal Article
Dorrell, R. M., Peakall, J., Darby, S. E., Parsons, D. R., Johnson, J., Sumner, E. J., …Tezcan, D. (2019). Self-sharpening induces jet-like structure in seafloor gravity currents. Nature communications, 10(1), Article 1381. https://doi.org/10.1038/s41467-019-09254-2

Gravity currents are the primary means by which sediments, solutes and heat are transported across the ocean-floor. Existing theory of gravity current flow employs a statistically-stable model of turbulent diffusion that has been extant since the 196... Read More about Self-sharpening induces jet-like structure in seafloor gravity currents.

Quantification of bedform dynamics and bedload sediment flux in sandy braided rivers from airborne and satellite imagery (2019)
Journal Article
Strick, R. J., Ashworth, P. J., Sambrook Smith, G. H., Nicholas, A. P., Best, J. L., Lane, S. N., …Dale, J. (2019). Quantification of bedform dynamics and bedload sediment flux in sandy braided rivers from airborne and satellite imagery. Earth surface processes and landforms : the journal of the British Geomorphological Research Group, 44(4), 953-972. https://doi.org/10.1002/esp.4558

Images from specially‐commissioned aeroplane sorties (manned aerial vehicle, MAV), repeat unmanned aerial vehicle (UAV) surveys, and Planet CubeSat satellites are used to quantify dune and bar dynamics in the sandy braided South Saskatchewan River, C... Read More about Quantification of bedform dynamics and bedload sediment flux in sandy braided rivers from airborne and satellite imagery.

On the causes of pulsing in continuous turbidity currents (2018)
Journal Article
Kostaschuk, R., Nasr-Azadani, M. M., Meiburg, E., Wei, T., Chen, Z., Negretti, M. E., …Parsons, D. R. (2018). On the causes of pulsing in continuous turbidity currents. Journal of Geophysical Research: Earth Surface, 123(11), 2827-2843. https://doi.org/10.1029/2018JF004719

Velocity pulsing has previously been observed in continuous turbidity currents in lakes and reservoirs, even though the input flow is steady. Several different mechanisms have been ascribed to the generation of these fluctuations, including Rayleigh‐... Read More about On the causes of pulsing in continuous turbidity currents.

Wave ripple development on mixed clay-sand substrates: Effects of clay winnowing and armoring (2018)
Journal Article
Wu, X., Baas, J. H., Parsons, D. R., Eggenhuisen, J., Amoudry, L., Cartigny, M., …Ruessink, G. (2018). Wave ripple development on mixed clay-sand substrates: Effects of clay winnowing and armoring. Journal of Geophysical Research: Earth Surface, 123(11), 2784-2801. https://doi.org/10.1029/2018JF004681

Based on bed form experiments in a large‐scale flume, we demonstrate that the rate of development of wave ripples on a mixed sand‐clay bed under regular waves is significantly lower than on a pure‐sand bed, even at clay fractions as low as 4.2%, and... Read More about Wave ripple development on mixed clay-sand substrates: Effects of clay winnowing and armoring.

Powerful turbidity currents driven by dense basal layers (2018)
Journal Article
Paull, C. K., Talling, P. J., Maier, K. L., Parsons, D., Xu, J., Caress, D. W., …Cartigny, M. J. (2018). Powerful turbidity currents driven by dense basal layers. Nature communications, 9(1), Article 4114. https://doi.org/10.1038/s41467-018-06254-6

Seafloor sediment flows (turbidity currents) are among the volumetrically most important yet least documented sediment transport processes on Earth. A scarcity of direct observations means that basic characteristics, such as whether flows are entirel... Read More about Powerful turbidity currents driven by dense basal layers.

Controls on mud distribution and architecture along the fluvial-to-marine transition (2018)
Journal Article
van de Lageweg, W. I., Braat, L., Parsons, D. R., & Kleinhans, M. G. (2018). Controls on mud distribution and architecture along the fluvial-to-marine transition. Geology, 46(11), 971-974. https://doi.org/10.1130/G45504.1

© 2018 Geological Society of America. The interaction of marine (tides and waves) and fluvial processes determines the sedimentary fill of coastal systems in the fluvial-tomarine (FTM) transition zone. Despite frequent recognition of tidal and wave i... Read More about Controls on mud distribution and architecture along the fluvial-to-marine transition.

The adaptation of dunes to changes in river flow (2018)
Journal Article
Reesink, A. J. H., Parsons, D. R., Ashworth, P. J., Best, J. L., Hardy, R. J., Murphy, B. J., …Unsworth, C. (2018). The adaptation of dunes to changes in river flow. Earth-Science Reviews, 185, 1065-1087. https://doi.org/10.1016/j.earscirev.2018.09.002

The dunes that cover the beds of most alluvial channels change in size and shape over time and in space, which in turn affects the flow and sediment-transport dynamics of the river. However, both the precise mechanisms of such adaptation of dunes, an... Read More about The adaptation of dunes to changes in river flow.

Hydrodynamic modelling of tidal-fluvial flows in a large river estuary (2018)
Journal Article
Sandbach, S., Nicholas, A., Ashworth, P., Best, J., Keevil, C., Parsons, D., …Simpson, C. (2018). Hydrodynamic modelling of tidal-fluvial flows in a large river estuary. Estuarine, coastal and shelf science, 212, 176-188. https://doi.org/10.1016/j.ecss.2018.06.023

© 2018 The Authors The transition between riverine and estuarine environments is characterised by a change from unidirectional to bidirectional flows, in a region referred to herein as the Tidally-Influenced Fluvial Zone (TIFZ). In order to improve o... Read More about Hydrodynamic modelling of tidal-fluvial flows in a large river estuary.

Modelling impacts of tidal stream turbines on surface waves (2018)
Journal Article
Li, X., Li, M., Jordan, L. B., McLelland, S., Parsons, D. R., Amoudry, L. O., …Comerford, L. (2019). Modelling impacts of tidal stream turbines on surface waves. Renewable energy, 130, 725-734. https://doi.org/10.1016/j.renene.2018.05.098

© 2018 Elsevier Ltd A high resolution Computational Flow Dynamics (CFD) numerical model is built based on a laboratory experiment in this research to study impacts of tidal turbines on surface wave dynamics. A reduction of ∼3% in wave height is obser... Read More about Modelling impacts of tidal stream turbines on surface waves.

Laboratory study on the effects of hydro kinetic turbines on hydrodynamics and sediment dynamics (2018)
Journal Article
Ramírez-Mendoza, R., Amoudry, L., Thorne, P., Cooke, R., McLelland, S., Jordan, L., …Murdoch, L. (2018). Laboratory study on the effects of hydro kinetic turbines on hydrodynamics and sediment dynamics. Renewable energy, 129(Part A), 271-284. https://doi.org/10.1016/j.renene.2018.05.094

© 2018 The Authors The need for hydrokinetic turbine wake characterisation and their environmental impact has led to a number of studies. However, a small number of them have taken into account mobile sediment bed effects. The aim of the present work... Read More about Laboratory study on the effects of hydro kinetic turbines on hydrodynamics and sediment dynamics.