Catharina J. Heerema
What determines the downstream evolution of turbidity currents?
Heerema, Catharina J.; Talling, Peter J.; Cartigny, Matthieu J.; Paull, Charles K.; Bailey, Lewis; Simmons, Stephen M.; Parsons, Daniel R.; Clare, Michael A.; Gwiazda, Roberto; Lundsten, Eve; Anderson, Krystle; Maier, Katherine L.; Xu, Jingping P.; Sumner, Esther J.; Rosenberger, Kurt; Gales, Jenny; McGann, Mary; Carter, Lionel; Pope, Edward
Authors
Peter J. Talling
Matthieu J. Cartigny
Charles K. Paull
Lewis Bailey
Dr Steve Simmons S.Simmons@hull.ac.uk
Lecturer in Energy and Environment
Daniel R. Parsons
Michael A. Clare
Roberto Gwiazda
Eve Lundsten
Krystle Anderson
Katherine L. Maier
Jingping P. Xu
Esther J. Sumner
Kurt Rosenberger
Jenny Gales
Mary McGann
Lionel Carter
Edward Pope
Abstract
© 2019 Seabed sediment flows called turbidity currents form some of the largest sediment accumulations, deepest canyons and longest channel systems on Earth. Only rivers transport comparable sediment volumes over such large areas; but there are far fewer measurements from turbidity currents, ensuring they are much more poorly understood. Turbidity currents differ fundamentally from rivers, as turbidity currents are driven by the sediment that they suspend. Fast turbidity currents can pick up sediment, and self-accelerate (ignite); whilst slow flows deposit sediment and dissipate. Self-acceleration cannot continue indefinitely, and flows might reach a near-uniform state (autosuspension). Here we show how turbidity currents evolve using the first detailed measurements from multiple locations along their pathway, which come from Monterey Canyon offshore California. All flows initially ignite. Typically, initially-faster flows then achieve near-uniform velocities (autosuspension), whilst slower flows dissipate. Fractional increases in initial velocity favour much longer runout, and a new model explains this bifurcating behaviour. However, the only flow during less-stormy summer months is anomalous as it self-accelerated, which is perhaps due to erosion of surficial-mud layer mid-canyon. Turbidity current evolution is therefore highly sensitive to both initial velocities and seabed character.
Citation
Heerema, C. J., Talling, P. J., Cartigny, M. J., Paull, C. K., Bailey, L., Simmons, S. M., Parsons, D. R., Clare, M. A., Gwiazda, R., Lundsten, E., Anderson, K., Maier, K. L., Xu, J. P., Sumner, E. J., Rosenberger, K., Gales, J., McGann, M., Carter, L., & Pope, E. (2020). What determines the downstream evolution of turbidity currents?. Earth and planetary science letters, 532, Article 116023. https://doi.org/10.1016/j.epsl.2019.116023
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 7, 2019 |
Online Publication Date | Dec 19, 2019 |
Publication Date | Feb 15, 2020 |
Deposit Date | Jan 20, 2020 |
Publicly Available Date | Jan 21, 2020 |
Journal | Earth and Planetary Science Letters |
Print ISSN | 0012-821X |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 532 |
Article Number | 116023 |
DOI | https://doi.org/10.1016/j.epsl.2019.116023 |
Keywords | turbidity current; submarine canyon; ignition; dissipation; autosuspension; flow behaviour |
Public URL | https://hull-repository.worktribe.com/output/3340716 |
Contract Date | Jan 21, 2020 |
Files
Published article
(1.8 Mb)
PDF
Copyright Statement
©2020 The Authors. Published by Elsevier B.V.
You might also like
Working with wood in rivers in the Western United States
(2024)
Journal Article
Real-time social media sentiment analysis for rapid impact assessment of floods
(2023)
Journal Article
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search