Skip to main content

Research Repository

Advanced Search

All Outputs (10)

In situ synchrotron x-ray study of ultrasound cavitation and its effect on solidification microstructures (2014)
Journal Article
Mi, J., Tan, D., & Lee, T. L. (2015). In situ synchrotron x-ray study of ultrasound cavitation and its effect on solidification microstructures. Metallurgical and Materials Transactions B, 46(4), 1615-1619. https://doi.org/10.1007/s11663-014-0256-z

Considerable progress has been made in studying the mechanism and effectiveness of using ultrasound waves to manipulate the solidification microstructures of metallic alloys. However, uncertainties remain in both the underlying physics of how microst... Read More about In situ synchrotron x-ray study of ultrasound cavitation and its effect on solidification microstructures.

Simplification of detailed rate-based model of post-combustion CO₂ capture for full chain CCS integration studies (2014)
Journal Article
Oko, E., Wang, M., & Olaleye, A. K. (2015). Simplification of detailed rate-based model of post-combustion CO₂ capture for full chain CCS integration studies. Fuel, 142, 87-93. https://doi.org/10.1016/j.fuel.2014.10.083

As post-combustion CO₂ capture (PCC) technology nears commercialisation, it has become necessary for the full carbon capture and storage (CCS) chain to be studied for better understanding of its dynamic characteristics. Model-based approach is one op... Read More about Simplification of detailed rate-based model of post-combustion CO₂ capture for full chain CCS integration studies.

Experimental study, dynamic modelling, validation and analysis of hydrogen production from biomass pyrolysis/gasification of biomass in a two-stage fixed bed reaction system (2014)
Journal Article
Olaleye, A. K., Adedayo, K. J., Wu, C., Nahil, M. A., Wang, M., & Williams, P. T. (2014). Experimental study, dynamic modelling, validation and analysis of hydrogen production from biomass pyrolysis/gasification of biomass in a two-stage fixed bed reaction system. Fuel, 137, 364-374. https://doi.org/10.1016/j.fuel.2014.07.076

There is great interest in producing hydrogen from renewable sources such as biomass rather than from fossil fuels. This paper presents new experimental results at different pyrolysis temperature and development of a dynamic model for a biomass pyrol... Read More about Experimental study, dynamic modelling, validation and analysis of hydrogen production from biomass pyrolysis/gasification of biomass in a two-stage fixed bed reaction system.

Masticatory biomechanics in the rabbit: a multi-body dynamics analysis (2014)
Journal Article
Watson, P. J., Gröning, F., Curtis, N., Fitton, L. C., Herrel, A., McCormack, S. W., & Fagan, M. J. (2014). Masticatory biomechanics in the rabbit: a multi-body dynamics analysis. Journal of the Royal Society interface / the Royal Society, 11(99), Article 20140564. https://doi.org/10.1098/rsif.2014.0564

Multi-body dynamics is a powerful engineering tool which is becoming increasingly popular for the simulation and analysis of skull biomechanics. This paper presents the first application of multi-body dynamics to analyse the biomechanics of the rabbi... Read More about Masticatory biomechanics in the rabbit: a multi-body dynamics analysis.

The onset of plasticity of a Zr-based bulk metallic glass (2014)
Journal Article
Huang, Y., Khong, J. C., Connolley, T., & Mi, J. (2014). The onset of plasticity of a Zr-based bulk metallic glass. International Journal of Plasticity, 60, 87-100. https://doi.org/10.1016/j.ijplas.2014.05.003

The deformation behaviors of a Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glassy alloy under step-controlled tensile loads have been studied in situ and systematically using scanning electron microscopy and synchrotron X-ray diffraction. A circular h... Read More about The onset of plasticity of a Zr-based bulk metallic glass.

Design and optimisation of a footfall energy harvesting system (2014)
Journal Article
Gilbert, J. M., & Balouchi, F. (2014). Design and optimisation of a footfall energy harvesting system. Journal of Intelligent Material Systems and Structures, 25(14), 1746-1756. https://doi.org/10.1177/1045389X14523853

The scavenging of electrical energy from normal human activity has a number of attractions, and footfall energy is seen as one of the most attractive sources. However, footfall motion is characterised by relatively large forces and low velocities, an... Read More about Design and optimisation of a footfall energy harvesting system.

Techno-economic analysis of chemical looping combustion with humid air turbine power cycle (2014)
Journal Article
Olaleye, A. K., & Wang, M. (2014). Techno-economic analysis of chemical looping combustion with humid air turbine power cycle. Fuel, 124, 221-231. https://doi.org/10.1016/j.fuel.2014.02.002

Power generation from fossil fuel-fired power plant is the largest single source of CO₂ emission. CO₂ emission contributes to climate change. On the other hand, renewable energy is hindered by complex constraints in dealing with large scale applicati... Read More about Techno-economic analysis of chemical looping combustion with humid air turbine power cycle.

A vibrating cantilever footfall energy harvesting device (2014)
Journal Article
Gilbert, J. M., & Balouchi, F. (2014). A vibrating cantilever footfall energy harvesting device. Journal of Intelligent Material Systems and Structures, 25(14), 1738-1745. https://doi.org/10.1177/1045389X14521880

Human footfall is an attractive source of energy for harvesting for low-power applications. However, the nature of footfall is poorly matched to electromagnetic generators. Footfall motion is characterised by high forces and low speeds, while electro... Read More about A vibrating cantilever footfall energy harvesting device.

Development and three-dimensional morphology of the zygomaticotemporal suture in primate skulls (2014)
Journal Article
Curtis, N., Witzel, U., & Fagan, M. J. (2014). Development and three-dimensional morphology of the zygomaticotemporal suture in primate skulls. Folia primatologica, 85(2), 77-87. https://doi.org/10.1159/000357526

Cranial sutures are an essential part of the growing skull, allowing bones to increase in size during growth, with their morphology widely believed to be dictated by the forces and displacements that they experience. The zygomaticotemporal suture in... Read More about Development and three-dimensional morphology of the zygomaticotemporal suture in primate skulls.

Understanding the deformation mechanism of individual phases of a ZrTi-based bulk metallic glass matrix composite using in situ diffraction and imaging methods (2014)
Journal Article
Huang, Y., Khong, J. C., Connolley, T., & Mi, J. (2014). Understanding the deformation mechanism of individual phases of a ZrTi-based bulk metallic glass matrix composite using in situ diffraction and imaging methods. Applied physics letters, 104(3), Article 031912. https://doi.org/10.1063/1.4863095

The plasticity of a ZrTi-based bulk metallic glass composite consisting of glassy matrix and crystalline dendritic phase was studied in-situ under identical tensile loading conditions using scanning electron microscopy and synchrotron X-ray diffracti... Read More about Understanding the deformation mechanism of individual phases of a ZrTi-based bulk metallic glass matrix composite using in situ diffraction and imaging methods.