Dr Martin Buzza D.M.Buzza@hull.ac.uk
Reader in Theoretical & Computational Physics
POSEIDON 2019
People Involved
Dr Jean-Sebastien Bouillard J.Bouillard@hull.ac.uk
Senior Lecturer in Physics and Nanotechnology
Dr Ali Adawi A.Adawi@hull.ac.uk
Reader in Physics
Dr Tommy Horozov T.S.Horozov@hull.ac.uk
Senior lecturer
Programmable 2D materials through shape-controlled capillary forces (2024)
Journal Article
Eatson, J., Morgan, S., Horozov, T. S., & Buzza, M. D. (2024). Programmable 2D materials through shape-controlled capillary forces. Proceedings of the National Academy of Sciences of the United States of America, 121(35), Article e2401134121. https://doi.org/10.1073/pnas.2401134121In recent years, self-assembly has emerged as a powerful tool for fabricating functional materials. Since self-assembly is fundamentally determined by the particle interactions in the system, if we can gain full control over these interactions, it wo... Read More about Programmable 2D materials through shape-controlled capillary forces.
Capillary Assembly of Anisotropic Particles at Cylindrical Fluid-Fluid Interfaces (2023)
Journal Article
Eatson, J. L., Gordon, J. R., Cegielski, P., Giesecke, A. L., Suckow, S., Rao, A., Silvestre, O. F., Liz-Marzán, L. M., Horozov, T. S., & Buzza, D. M. A. (2023). Capillary Assembly of Anisotropic Particles at Cylindrical Fluid-Fluid Interfaces. Langmuir : the ACS journal of surfaces and colloids, 39(17), 6006–6017. https://doi.org/10.1021/acs.langmuir.3c00016The unique behavior of colloids at liquid interfaces provides exciting opportunities for engineering the assembly of colloidal particles into functional materials. The deformable nature of fluid-fluid interfaces means that we can use the interfacial... Read More about Capillary Assembly of Anisotropic Particles at Cylindrical Fluid-Fluid Interfaces.
Stark Effect Control of the Scattering Properties of Plasmonic Nanogaps (2022)
Journal Article
Pagnotto, D., Muravitskaya, A., Benoit, D. M., Bouillard, J. S. G., & Adawi, A. M. (2023). Stark Effect Control of the Scattering Properties of Plasmonic Nanogaps. ACS Applied Optical Materials, 1(1), 500–506. https://doi.org/10.1021/acsaom.2c00135The development of actively tunable plasmonic nanostructures enables real-time and on-demand enhancement of optical signals. This is an essential requirement for a wide range of applications such as sensing and nanophotonic devices. Here we show that... Read More about Stark Effect Control of the Scattering Properties of Plasmonic Nanogaps.
Förster Resonance Energy Transfer Rate and Efficiency in Plasmonic Nanopatch Antennas (2022)
Journal Article
Hamza, A. O., Bouillard, J. S. G., & Adawi, A. M. (in press). Förster Resonance Energy Transfer Rate and Efficiency in Plasmonic Nanopatch Antennas. Chemphotochem, https://doi.org/10.1002/cptc.202100285Successful control of Förster resonance energy transfer (FRET) through the engineering of the local density of optical states (LDOS) will allow us to develop novel strategies to fully exploit this phenomenon in key enabling technologies. Here we pres... Read More about Förster Resonance Energy Transfer Rate and Efficiency in Plasmonic Nanopatch Antennas.
Defined core–shell particles as the key to complex interfacial self-assembly (2021)
Journal Article
Menath, J., Eatson, J., Brilmayer, R., Andrieu-Brunsen, A., Buzza, D. M. A., & Vogel, N. (2021). Defined core–shell particles as the key to complex interfacial self-assembly. Proceedings of the National Academy of Sciences of the United States of America, 118(52), Article e2113394118. https://doi.org/10.1073/pnas.2113394118The two-dimensional self-assembly of colloidal particles serves as a model system for fundamental studies of structure formation and as a powerful tool to fabricate functional materials and surfaces. However, the prevalence of hexagonal symmetries in... Read More about Defined core–shell particles as the key to complex interfacial self-assembly.
Adsorption trajectories of nonspherical particles at liquid interfaces (2021)
Journal Article
Buzza, D. M. A., Stasiuk, G. J., Horozov, T. S., Adawi, A. M., Bouillard, J.-S. G., Lowe, C., Fox, J., & Morgan, S. O. (2021). Adsorption trajectories of nonspherical particles at liquid interfaces. Physical Review E, 103(4), Article 042604. https://doi.org/10.1103/PhysRevE.103.042604The adsorption of colloidal particles at liquid interfaces is of great importance scientifically and industrially, but the dynamics of the adsorption process is still poorly understood. In this paper we use a Langevin model to study the adsorption dy... Read More about Adsorption trajectories of nonspherical particles at liquid interfaces.
Förster resonance energy transfer and the local optical density of states in plasmonic nanogaps (2021)
Journal Article
Hamza, A. O., Viscomi, F. N., Bouillard, J. S. G., & Adawi, A. M. (2021). Förster resonance energy transfer and the local optical density of states in plasmonic nanogaps. Journal of Physical Chemistry Letters, 12(5), 1507-1513. https://doi.org/10.1021/acs.jpclett.0c03702Förster resonance energy transfer (FRET) is a fundamental phenomenon in photosynthesis and is of increasing importance for the development and enhancement of a wide range of optoelectronic devices, including color-tuning LEDs and lasers, light harves... Read More about Förster resonance energy transfer and the local optical density of states in plasmonic nanogaps.
Pattern formation in two-dimensional hard-core/soft-shell systems with variable soft shell profiles (2020)
Journal Article
Somerville, W. R. C., Law, A. D., Rey, M., Vogel, N., Archer, A. J., & Buzza, D. M. A. (2020). Pattern formation in two-dimensional hard-core/soft-shell systems with variable soft shell profiles. Soft matter, 16(14), 3564-3573. https://doi.org/10.1039/d0sm00092bHard-core/soft shell (HCSS) particles have been shown to self-assemble into a remarkably rich variety of structures under compression due to the simple interplay between the hard-core and soft-shoulder length scales in their interactions. Most studie... Read More about Pattern formation in two-dimensional hard-core/soft-shell systems with variable soft shell profiles.