Professor Thomas Coulthard T.Coulthard@hull.ac.uk
Professor of Physical Geography
Professor Thomas Coulthard T.Coulthard@hull.ac.uk
Professor of Physical Geography
Project SINATRA responds to the NERC call for research on flooding from intense rainfall (FFIR) with a programme of focused research designed to advance general scientific understanding of the processes determining the probability, incidence, and impacts of FFIR. Such extreme rainfall events may only last for a few hours at most, but can generate terrifying and destructive floods. Their impact can be affected by a wide range factors (or processes) such as the location and intensity of the rainfall, the shape and steepness of the catchment it falls on, how much sediment is moved by the water and the vulnerability of the communities in the flood's path. Furthermore, FFIR are by their nature rapid, making it very difficult for researchers to 'capture' measurements during events. The complexity, speed and lack of field measurements on FFIR make it difficult to create computer models to predict flooding and often we are uncertain as to their accuracy. To address these issues, NERC launched the FFIR research programme. It aims to reduce the risks from surface water and flash floods by improving our identification and prediction of the meteorological (weather), hydrological (flooding) and hydro-morphological (sediment and debris moved by floods) processes that lead to FFIR. A major requirement of the programme is identifying how particular catchments may be vulnerable to FFIR, due to factors such as catchment area, shape, geology and soil type as well as land-use. Additionally, the catchments most susceptible to FFIR are often small and ungauged. Project SINATRA will address these issues in three stages: Firstly increasing our understanding of what factors cause FFIR and gathering new, high resolution measurements of FFIR; Secondly using this new understanding and data to improve models of FFIR so we can predict where they may happen - nationwide and; Third to use these new findings and predictions to provide the Environment Agency and over professionals with information and software they can use to manage FFIR, reducing their damage and impact to communities. In more detail, we will: 1. Enhance scientific understanding of the processes controlling FFIR, by- (a) assembling an archive of past FFIR events in Britain and their impacts, as a prerequisite for improving our ability to predict future occurrences of FFIR. (b) making real time observations of flooding during flood events as well as post-event surveys and historical event reconstruction, using fieldwork and crowd-sourcing methods. (c) characterising the physical drivers for UK summer flooding events by identifying the large-scale atmospheric conditions associated with FFIR events, and linking them to catchment type. 2. Develop improved computer modelling capability to predict FFIR processes, by- (a) employing an integrated catchment/urban scale modelling approach to FFIR at high spatial and temporal scales, modelling rapid catchment response to flash floods and their impacts in urban areas. (b) scaling up to larger catchments by improving the representation of fast riverine and surface water flooding and hydromorphic change (including debris flow) in regional scale models of FFIR. (c) improving the representation of FFIR in the JULES land surface model by integrating river routing and fast runoff processes, and performing assimilation of soil moisture and river discharge into the model run. 3. Translate these improvements in science into practical tools to inform the public more effectively, by- (a) developing tools to enable prediction of future FFIR impacts to support the Flood Forecasting Centre in issuing new 'impacts-based' warnings about their occurrence. (b) developing a FFIR analysis tool to assess risks associated with rare events in complex situations involving incomplete knowledge, analogous to those developed for safety assessment in radioactive waste management. In so doing SINATRA will achieve NERC's science goals for the FFIR programme.
Status | Project Complete |
---|---|
Value | £241,188.00 |
Project Dates | Sep 1, 2013 - Feb 28, 2019 |
Combination Hazard of Extreme rainfall, storm Surge & high Tide on estuarine infrastructure Nov 1, 2017 - Aug 31, 2018
UK estuaries are at risk from combination flooding. Sea-level rise and predicted changes to UK storm patterns (affecting both surge and river flows) will alter the joint probability of multiple hazard events, making previous understanding of risk, an...
Read More about Combination Hazard of Extreme rainfall, storm Surge & high Tide on estuarine infrastructure.
Long-term Morphodynamics and Sedimentation of the Holderness Coast and Humber Estuary Feb 25, 2015 - Feb 24, 2018
Risky Cities: Living with water in an uncertain future climate Aug 1, 2020 - Nov 30, 2023
https://riskycities.hull.ac.uk/
Estuarine and coastal cities are acutely vulnerable in the face of climate uncertainty. 40% of the world's population lives within 100km of the sea and coastal populations are directly at risk from rising sea levels...
Read More about Risky Cities: Living with water in an uncertain future climate.
Present & Future Climate Hazard/Embedded Researcher Scheme Aug 10, 2020 - Aug 9, 2022
Twenty million people living near UK estuaries are at risk from compound flooding hazards. Recent near-miss flooding in UK catchments and estuaries (Dec-2013, Jan-2017) could have been much worse with subtle changes in surge-precipitation timings, al...
Read More about Present & Future Climate Hazard/Embedded Researcher Scheme.
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search