Professor Daniel Parsons
GLOSS: GLObal Suspended Sediment: Drivers, trends and future trajectories
People Involved
Project Description
This project addresses how environmental change affects the movement of sediment through rivers and into our oceans. Understanding the movement of suspended sediment is important because it is a vector for nutrients and pollutants, and because sediment also creates floodplains and nourishes deltas and beaches, affording resilience to coastal zones. To develop our understanding of sediment flows, we will quantify recent variations (1985-present) in sediment loads for every river on the planet with a width greater than 90 meters. We will also project how these river sediment loads will change into the future.
These goals have not previously been possible to achieve because direct measurements of sediment transport through rivers have only ever been made on very few (<10% globally) rivers. We are proposing to avoid this difficulty by using a 35+ years of archive of freely available satellite imagery. Specifically, we will use the cloud-based Google Earth Engine to automatically analyse each satellite image for its surface reflectance, which will enable us to estimate the concentration of sediment suspended near the surface of rivers. In conjunction with other methods that characterize the flow and the mixing of suspended sediment through the water column, these new estimates of surface Suspended Sediment Concentration (SSC) will be used to calculate the total movement of suspended sediment through rivers.
We then analyse our new database (which, with a five orders of magnitude gain in spatial resolution relative to the current state-of-the-art, will be unprecedented in its size and global coverage) of suspended sediment transport using novel Machine Learning techniques, within a Bayesian Network framework. This analysis will allow us to link our estimated of sediment transport to their environmental controls (such as climate, geology, damming, terrain), with the scale of the empirical analysis enabling a step-change to be obtained in our understanding of the factors driving sediment mocement through the worlds rivers. In turn, this will allow us to build a reliable model of sediment movement, which we will apply to provide a comprehensive set of future projections of sediment movement across Earth to the oceans. Such future projections are vital because the Earths surface is undergoing a phase of unprecedented change (e.g., through climate change, damming, deforestation, urbanization, etc) that will likely drive large transitions in sediment flux, with major and wide reaching potential impacts on coastal and delta systems and populations. Importantly, we will not just quantify the scale and trajectories of change, but we will also identify how the relative contributions of anthropogenic, climate and land cover processes drive these shifts into the future. This will allow s to address fundamental science questions relating to the movement of sediment through Earths rivers to our oceans.
Project Acronym | GLOSS |
---|---|
Status | Project Complete |
Value | £23,376.00 |
Project Dates | Jun 1, 2022 - May 31, 2025 |
Partner Organisations | Yellow River Institute of Hydraulic Research UNESCO National University of Litoral Centro de Ecología Aplicada del Litoral University of Rennes 1 University of Cambridge United States Geological Survey Royal Geographical Society Geological Survey of Canada Dartmouth College Environment Agency |
You might also like
Sustainable Intensification of Rice Agriculture in Vulnerable Mega-Deltas: A Global Challenge’ May 1, 2017 - Apr 30, 2019
The world's major river deltas - hotspots of agricultural production that support rural livelihoods and feed much of the global population - are facing a major sustainability crisis. This is because they are under threat from being 'drowned' by risin...
Read More about Sustainable Intensification of Rice Agriculture in Vulnerable Mega-Deltas: A Global Challenge’.
How do deep-ocean turbidity currents behave that form the largest sediment accumulations on Earth? Apr 1, 2019 - Sep 30, 2025
Seafloor flows called turbidity currents form the largest sediment accumulations on Earth (submarine fans). They flushglobally significant amounts of sediment, organic carbon, nutrients and fresher-water into the deep ocean, and affect itsoxygen leve...
Read More about How do deep-ocean turbidity currents behave that form the largest sediment accumulations on Earth?.
Understanding floods from catchment to coast Jan 1, 2017 - Dec 31, 2017
Runner-Up Award as part of the favourite exhibit at Into the Blue held in Manchester 2016
Morphodynamic Stickiness: the influence of physical and biological cohesion in sedimentary systems May 1, 2017 - Jan 31, 2023
Our coasts, estuaries, & low-land river environments are some of the most sensitive systems to sea-level rise & environmental change. In order to manage these systems, & adapt to future changes, we desperately need to be able to predict how they will...
Read More about Morphodynamic Stickiness: the influence of physical and biological cohesion in sedimentary systems.
Energy from Waste and Biomass Dec 1, 2016 - Dec 31, 2024