Skip to main content

Research Repository

Advanced Search

ICED: Integrated Cryogenic separation for CO2 Emissions Decrease

People Involved

Evaluation of Mathematical Models for CO2 Frost Formation in a Cryogenic Moving Bed (2023)
Journal Article
Cann, D., & Font-Palma, C. (2023). Evaluation of Mathematical Models for CO2 Frost Formation in a Cryogenic Moving Bed. Energies, 16(5), Article 2314. https://doi.org/10.3390/en16052314

Moving bed heat exchangers (MBHE)s are used in industrial applications including waste heat recovery and the drying of solids. As a result, energy balance models have been developed to simulate the heat transfer between a moving bed and the gas phase... Read More about Evaluation of Mathematical Models for CO2 Frost Formation in a Cryogenic Moving Bed.

Sorption direct air capture with CO2 utilization (2023)
Journal Article
Jiang, L., Liu, W., Liu, W., Wang, R. Q., Gonzalez-Diaz, A., Rojas-Michaga, M. F., Michailos, S., Pourkashanian, M., Zhang, X. J., & Font-Palma, C. (2023). Sorption direct air capture with CO2 utilization. Progress in Energy and Combustion Science, 95, Article 101069. https://doi.org/10.1016/j.pecs.2022.101069

Direct air capture (DAC) is gathering momentum since it has vast potential and high flexibility to collect CO2 from discrete sources as “synthetic tree” when compared with current CO2 capture technologies, e.g., amine based post-combustion capture. I... Read More about Sorption direct air capture with CO2 utilization.