Skip to main content

Research Repository

Advanced Search

Reduced-cost components for hydrogen fuel cells (focussing on platinum-free catalysts and alternative electrolytes) to ultimately expedite decarbonisation of the automotive sector

People Involved

Profile image of Dr Mohammed Ismail

Dr Mohammed Ismail m.s.ismail@hull.ac.uk
Senior Lecturer - Hydrogen and Fuel Cell Technologies

Characterisation of double-sided graphene microporous layers for improved polymer electrolyte membrane fuel cell performance (2024)
Journal Article
Ruscillo, F., Ismail, M. S., Gautama, Z. A., Nishihara, M., Hughes, K. J., Ingham, D. B., Ma, L., & Pourkashanian, M. (2025). Characterisation of double-sided graphene microporous layers for improved polymer electrolyte membrane fuel cell performance. International Journal of Hydrogen Energy, 98, 576-589. https://doi.org/10.1016/j.ijhydene.2024.12.094

This study experimentally evaluates the effects of double-sided microporous layer coated gas diffusion layers, comparing conventional Vulcan black with graphene-based microporous layers. Key properties and fuel cell performance were analysed. The res... Read More about Characterisation of double-sided graphene microporous layers for improved polymer electrolyte membrane fuel cell performance.

Patterned hydrophobic gas diffusion layers for enhanced water management in polymer electrolyte fuel cells (2024)
Journal Article
Calili-Cankir, F., Can, E. M., Ingham, D. B., Hughes, K. J., Ma, L., Pourkashanian, M., Lyth, S. M., & Ismail, M. S. (2024). Patterned hydrophobic gas diffusion layers for enhanced water management in polymer electrolyte fuel cells. Chemical Engineering Journal, 484, Article 149711. https://doi.org/10.1016/j.cej.2024.149711

Flooding of the cathode due to water accumulation is one of the biggest limiting factors in the performance of polymer electrolyte fuel cells (PEFCs). This study therefore attempts to solve this issue by fabricating gas diffusion layers (GDLs) with d... Read More about Patterned hydrophobic gas diffusion layers for enhanced water management in polymer electrolyte fuel cells.