Skip to main content

Research Repository

Advanced Search

Outputs (38)

Chemical evolution of fluorine in the Milky Way (2022)
Journal Article
Womack, K., Vincenzo, F., Gibson, B., Côté, B., Pignatari, M., Brinkman, H. E., Ventura, P., & Karakas, A. (2023). Chemical evolution of fluorine in the Milky Way. Monthly notices of the Royal Astronomical Society, 518(1), 1543-1556. https://doi.org/10.1093/mnras/stac3180

Fluorine has many different potential sites and channels of production, making narrowing down a dominant site of fluorine production particularly challenging. In this work, we investigate which sources are the dominant contributors to the galactic fl... Read More about Chemical evolution of fluorine in the Milky Way.

Horizons: nuclear astrophysics in the 2020s and beyond (2022)
Journal Article
Schatz, H., Becerril Reyes, A. D., Best, A., Brown, E. F., Chatziioannou, K., Chipps, K. A., Deibel, C. M., Ezzeddine, R., Galloway, D. K., Hansen, C. J., Herwig, F., Ji, A. P., Lugaro, M., Meisel, Z., Norman, D., Read, J. S., Roberts, L. F., Spyrou, A., Tews, I., Timmes, F. X., …Pignatari, M. (2022). Horizons: nuclear astrophysics in the 2020s and beyond. Journal of Physics G: Nuclear and Particle Physics, 49(11), Article 110502. https://doi.org/10.1088/1361-6471/ac8890

Nuclear astrophysics is a field at the intersection of nuclear physics and astrophysics, which seeks to understand the nuclear engines of astronomical objects and the origin of the chemical elements. This white paper summarizes progress and status of... Read More about Horizons: nuclear astrophysics in the 2020s and beyond.

The NuGrid AGB Evolution and Nucleosynthesis Data Set (2022)
Journal Article
Battino, U., Pignatari, M., Tattersall, A., Denissenkov, P., & Herwig, F. (2022). The NuGrid AGB Evolution and Nucleosynthesis Data Set. Universe, 8(3), Article 170. https://doi.org/10.3390/universe8030170

Asymptotic Giant Branch (AGB) stars play a key role in the chemical evolution of galaxies. These stars are the fundamental stellar site for the production of light elements such as C, N and F, and half of the elements heavier than Fe via the slow neu... Read More about The NuGrid AGB Evolution and Nucleosynthesis Data Set.

A Large-scale Approach to Modeling Molecular Biosignatures: The Diatomics (2022)
Journal Article
Cross, T. M., Benoit, D. M., Pignatari, M., & Gibson, B. K. (2022). A Large-scale Approach to Modeling Molecular Biosignatures: The Diatomics. The Astrophysical journal, 925(1), Article 57. https://doi.org/10.3847/1538-4357/ac3976

This work presents the first steps to modeling synthetic rovibrational spectra for all molecules of astrophysical interest using a new approach implemented in the Prometheus code. The goal is to create a new comprehensive source of first-principles m... Read More about A Large-scale Approach to Modeling Molecular Biosignatures: The Diatomics.

Galactic Chemical Evolution of Radioactive Isotopes with an s-process Contribution (2022)
Journal Article
Trueman, T. C. L., Côté, B., Yagüe López, A., Den Hartogh, J., Pignatari, M., Soós, B., Karakas, A. I., & Lugaro, M. (2022). Galactic Chemical Evolution of Radioactive Isotopes with an s-process Contribution. The Astrophysical journal, 924(1), 10. https://doi.org/10.3847/1538-4357/ac31b0

Analysis of inclusions in primitive meteorites reveals that several short-lived radionuclides (SLRs) with half-lives of 0.1-100 Myr existed in the early solar system (ESS). We investigate the ESS origin of 107Pd, 135Cs, and 182Hf, which are produced... Read More about Galactic Chemical Evolution of Radioactive Isotopes with an s-process Contribution.

Radioactive nuclei in the early Solar system: analysis of the 15 isotopes produced by core-collapse supernovae (2021)
Journal Article
Lawson, T. V., Pignatari, M., Stancliffe, R. J., Den Hartogh, J., Jones, S., Fryer, C. L., Gibson, B. K., & Lugaro, M. (2022). Radioactive nuclei in the early Solar system: analysis of the 15 isotopes produced by core-collapse supernovae. Monthly notices of the Royal Astronomical Society, 511(1), 886-902. https://doi.org/10.1093/mnras/stab3684

Short-lived radioactive isotopes (SLRs) with half-lives between 0.1 and 100 Myr can be used to probe the origin of the Solar system. In this work, we examine the core-collapse supernovae production of the 15 SLRs produced: 26Al, 36Cl, 41Ca, 53Mn, 60F... Read More about Radioactive nuclei in the early Solar system: analysis of the 15 isotopes produced by core-collapse supernovae.

26Aluminum from Massive Binary Stars. II. Rotating Single Stars up to Core Collapse and Their Impact on the Early Solar System (2021)
Journal Article
Brinkman, H. E., Hartogh, J. W., Doherty, C. L., Pignatari, M., & Lugaro, M. (2021). 26Aluminum from Massive Binary Stars. II. Rotating Single Stars up to Core Collapse and Their Impact on the Early Solar System. The Astrophysical journal, 923(1), Article 47. https://doi.org/10.3847/1538-4357/ac25ea

Radioactive nuclei were present in the early solar system (ESS), as inferred from analysis of meteorites. Many are produced in massive stars, either during their lives or their final explosions. In the first paper of this series (Brinkman et al. 2019... Read More about 26Aluminum from Massive Binary Stars. II. Rotating Single Stars up to Core Collapse and Their Impact on the Early Solar System.

129I and 247Cm in meteorites constrain the last astrophysical source of solar r-process elements (2021)
Journal Article
Côté, B., Eichler, M., Yagüe, A., Vassh, N., Mumpower, M. R., Világos, B., Soós, B., Arcones, A., Sprouse, T. M., Surman, R., Pignatari, M., Pető, M. K., Wehmeyer, B., Rauscher, T., & Lugaro, M. (2021). 129I and 247Cm in meteorites constrain the last astrophysical source of solar r-process elements. Science, 371(6532), 945-948. https://doi.org/10.1126/science.aba1111

The composition of the early Solar System can be inferred from meteorites. Many elements heavier than iron were formed by the rapid neutron capture process (r-process), but the astrophysical sources where this occurred remain poorly understood. We de... Read More about 129I and 247Cm in meteorites constrain the last astrophysical source of solar r-process elements.

Project ThaiPASS: international outreach blending astronomy and Python (2021)
Journal Article
Keegans, J. D., Stancliffe, R. J., Bilton, L. E., Cashmore, C. R., Gibson, B. K., Kristensen, M. T., Lawson, T. V., Pignatari, M., Vaezzadeh, I., Côté, B., & Chongchitnan, S. (2021). Project ThaiPASS: international outreach blending astronomy and Python. Physics Education, 56(3), Article 035001. https://doi.org/10.1088/1361-6552/abdae7

We present our outreach program, the Thailand–UK Python+Astronomy Summer School (ThaiPASS), a collaborative project comprising UK and Thai institutions and assess its impact and possible application to schools in the United Kingdom. Since its incepti... Read More about Project ThaiPASS: international outreach blending astronomy and Python.

Evaluation of the N 13 (α,p) O 16 thermonuclear reaction rate and its impact on the isotopic composition of supernova grains (2020)
Journal Article
Meyer, A., De Séréville, N., Laird, A. M., Hammache, F., Longland, R., Lawson, T., Pignatari, M., Audouin, L., Beaumel, D., Fortier, S., Kiener, J., Lefebvre-Schuhl, A., Pellegriti, M. G., Stanoiu, M., & Tatischeff, V. (2020). Evaluation of the N 13 (α,p) O 16 thermonuclear reaction rate and its impact on the isotopic composition of supernova grains. Physical Review C, 102(3), Article 035803. https://doi.org/10.1103/PhysRevC.102.035803

Background: It has been recently suggested that hydrogen ingestion into the helium shell of massive stars could lead to high C13 and N15 excesses when the shock of a core-collapse supernova passes through its helium shell. This prediction questions t... Read More about Evaluation of the N 13 (α,p) O 16 thermonuclear reaction rate and its impact on the isotopic composition of supernova grains.

Shell-model studies of the astrophysical rp -process reactions S 34 (p,γ) Cl 35 and Cl 34g,m (p,γ) Ar 35 (2020)
Journal Article
Richter, W. A., Brown, B. A., Longland, R., Wrede, C., Denissenkov, P., Fry, C., Herwig, F., Kurtulgil, D., Pignatari, M., & Reifarth, R. (2020). Shell-model studies of the astrophysical rp -process reactions S 34 (p,γ) Cl 35 and Cl 34g,m (p,γ) Ar 35. Physical Review C, 102(2), Article 025801. https://doi.org/10.1103/PhysRevC.102.025801

© 2020 American Physical Society. Background: Dust grains condensed in the outflows of presolar classical novae should have been present in the protosolar nebula. Candidates for such presolar nova grains have been found in primitive meteorites and ca... Read More about Shell-model studies of the astrophysical rp -process reactions S 34 (p,γ) Cl 35 and Cl 34g,m (p,γ) Ar 35.

Origin of Large Meteoritic SiC Stardust Grains in Metal-rich AGB Stars (2020)
Journal Article
Dell'Agli, F., D'Orazi, V., Schönb chler, M., Lugaro, M., Cseh, B., Világos, B., Karakas, A. I., Ventura, P., Dell’Agli, F., Trappitsch, R., Hampel, M., D’Orazi, V., Pereira, C. B., Tagliente, G., Szabó, G. M., Pignatari, M., Battino, U., Tattersall, A., Ek, M., Schönbächler, M., …Nittler, L. R. (2020). Origin of Large Meteoritic SiC Stardust Grains in Metal-rich AGB Stars. The Astrophysical journal, 898(2), Article 96. https://doi.org/10.3847/1538-4357/ab9e74

Stardust grains that originated in ancient stars and supernovae are recovered from meteorites and carry the detailed composition of their astronomical sites of origin. We present evidence that the majority of large (μm-sized) meteoritic silicon carbi... Read More about Origin of Large Meteoritic SiC Stardust Grains in Metal-rich AGB Stars.

Chromium Nucleosynthesis and Silicon-Carbon Shell Mergers in Massive Stars (2020)
Journal Article
Côté, B., Jones, S., Herwig, F., & Pignatari, M. (2020). Chromium Nucleosynthesis and Silicon-Carbon Shell Mergers in Massive Stars. The Astrophysical journal, 892(1), Article 57. https://doi.org/10.3847/1538-4357/ab77ac

We analyze the production of the element Cr in galactic chemical evolution (GCE) models using the NuGrid nucleosynthesis yields set. We show that the unusually large [Cr/Fe] abundance at [Fe/H] ≈ 0 reported by previous studies using those yields and... Read More about Chromium Nucleosynthesis and Silicon-Carbon Shell Mergers in Massive Stars.

Isotopic Signatures of Supernova Nucleosynthesis in Presolar Silicon Carbide Grains of Type AB with Supersolar 14N/15N Ratios (2019)
Journal Article
Hoppe, P., Stancliffe, R. J., Pignatari, M., & Amari, S. (2019). Isotopic Signatures of Supernova Nucleosynthesis in Presolar Silicon Carbide Grains of Type AB with Supersolar 14N/15N Ratios. The Astrophysical journal, 887(1), 10. https://doi.org/10.3847/1538-4357/ab521c

We report high-resolution C, N, Al, Si, and S isotope data of 38 presolar SiC grains of type AB. Seventeen of these grains are of subtype AB1 (14N/15N < 440 = solar) and 20 of subtype AB2 (14N/15N ≥ 440), previously proposed to be mainly from superno... Read More about Isotopic Signatures of Supernova Nucleosynthesis in Presolar Silicon Carbide Grains of Type AB with Supersolar 14N/15N Ratios.

The s process in rotating low-mass AGB stars: Nucleosynthesis calculations in models matching asteroseismic constraints (2019)
Journal Article
Den Hartogh, J. W., Hirschi, R., Lugaro, M., Doherty, C. L., Battino, U., Herwig, F., Pignatari, M., & Eggenberger, P. (2019). The s process in rotating low-mass AGB stars: Nucleosynthesis calculations in models matching asteroseismic constraints. Astronomy and Astrophysics, 629, Article A123. https://doi.org/10.1051/0004-6361/201935476

Aims. We investigate the s-process during the AGB phase of stellar models whose cores are enforced to rotate at rates consistent with asteroseismology observations of their progenitors and successors. Methods. We calculated new 2 M⊙ , Z  =  0.01 mode... Read More about The s process in rotating low-mass AGB stars: Nucleosynthesis calculations in models matching asteroseismic constraints.

Heavy Elements Nucleosynthesis on Accreting White Dwarfs Surface: Seeding the p-Process (2019)
Presentation / Conference Contribution
Battino, U., Travaglio, C., Pignatari, M., & Lederer-Woods, C. Heavy Elements Nucleosynthesis on Accreting White Dwarfs Surface: Seeding the p-Process. Presented at Nuclei in the Cosmos XV, Assergi, Italy

© 2019, Springer Nature Switzerland AG. The production of the proton-rich isotopes beyond iron that we observe today in the solar system is still uncertain. Thermonuclear supernovae (SNe Ia) exploding within the single-degenerate scenario have been p... Read More about Heavy Elements Nucleosynthesis on Accreting White Dwarfs Surface: Seeding the p-Process.

Inhomogeneous Chemical Evolution of r-Process Elements in the Galactic Halo (2019)
Presentation / Conference Contribution
Wehmeyer, B., Fröhlich, C., Pignatari, M., & Thielemann, F. K. Inhomogeneous Chemical Evolution of r-Process Elements in the Galactic Halo. Presented at Nuclei in the Cosmos XV, Assergi, Italy

© 2019, Springer Nature Switzerland AG. The origin of the heaviest elements is still a matter of debate. For the rapid neutron capture process (“r-process”), multiple sites have been proposed, e.g., neutron star mergers and (sub-classes) of supernova... Read More about Inhomogeneous Chemical Evolution of r-Process Elements in the Galactic Halo.

H-He Shell Interactions and Nucleosynthesis in Massive Population III Stars (2019)
Presentation / Conference Contribution
Clarkson, O., Herwig, F., Andrassy, R., Woodward, P., Pignatari, M., & Mao, H. H-He Shell Interactions and Nucleosynthesis in Massive Population III Stars. Presented at Nuclei in the Cosmos XV, Assergi, Italy

© 2019, Springer Nature Switzerland AG. We report on our ongoing investigation into the nucleosynthetic and hydrodynamic nature of mixing at the interface between the H- and He-convection zones in massive Pop III stars. Studying recent a grid of 26 1... Read More about H-He Shell Interactions and Nucleosynthesis in Massive Population III Stars.

The i-process yields of rapidly accreting white dwarfs from multicycle He-shell flash stellar evolution models with mixing parametrizations from 3D hydrodynamics simulations (2019)
Journal Article
Denissenkov, P. A., Herwig, F., Woodward, P., Andrassy, R., Pignatari, M., & Jones, S. (2019). The i-process yields of rapidly accreting white dwarfs from multicycle He-shell flash stellar evolution models with mixing parametrizations from 3D hydrodynamics simulations. Monthly notices of the Royal Astronomical Society, 488(3), 4258-4270. https://doi.org/10.1093/mnras/stz1921

© 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society We have modelled the multicycle evolution of rapidly accreting CO white dwarfs (RAWDs) with stable H burning intermittent with strong He-shell flash... Read More about The i-process yields of rapidly accreting white dwarfs from multicycle He-shell flash stellar evolution models with mixing parametrizations from 3D hydrodynamics simulations.

Galactic chemical evolution of radioactive isotopes (2019)
Journal Article
Côté, B., Lugaro, M., Reifarth, R., Pignatari, M., Világos, B., Yagüe, A., & Gibson, B. K. (2019). Galactic chemical evolution of radioactive isotopes. The Astrophysical journal, 878(2), Article 156. https://doi.org/10.3847/1538-4357/ab21d1

The presence of short-lived (∼ Myr) radioactive isotopes in meteoritic inclusions at the time of their formation represents a unique opportunity to study the circumstances that led to the formation of the Solar System. To interpret these observations... Read More about Galactic chemical evolution of radioactive isotopes.