Skip to main content

Research Repository

Advanced Search

Outputs (5)

Targeted removal of blood cancer cells from mixed cell populations by cell recognition with matching particle imprints (2019)
Journal Article
Das, A. A., Remaud, P., Medlock, J., Das, A. A. K., Allsup, D. J., Madden, L. A., Nees, D., Weldrick, P. J., & Paunov, V. N. (2019). Targeted removal of blood cancer cells from mixed cell populations by cell recognition with matching particle imprints. Materials Chemistry Frontiers, 4(1), 197-205. https://doi.org/10.1039/c9qm00531e

We report a new approach for separation of blood cancer cells from healthy white blood cells based on cell recognition by surface functionalised particle imprints. We prepared polymeric particle imprints from a layer of suspension of monodisperse PMM... Read More about Targeted removal of blood cancer cells from mixed cell populations by cell recognition with matching particle imprints.

Enhanced Clearing of Wound-Related Pathogenic Bacterial Biofilms Using Protease-Functionalized Antibiotic Nanocarriers (2019)
Journal Article
Weldrick, P. J., Hardman, M. J., & Paunov, V. N. (2019). Enhanced Clearing of Wound-Related Pathogenic Bacterial Biofilms Using Protease-Functionalized Antibiotic Nanocarriers. ACS Applied Materials & Interfaces, 11(47), 43902-43919. https://doi.org/10.1021/acsami.9b16119

© 2019 American Chemical Society. Biofilms are prevalent in chronic wounds and once formed are very hard to remove, which is associated with poor outcomes and high mortality rates. Biofilms are comprised of surface-attached bacteria embedded in an ex... Read More about Enhanced Clearing of Wound-Related Pathogenic Bacterial Biofilms Using Protease-Functionalized Antibiotic Nanocarriers.

Fabrication of Human Keratinocyte Cell Clusters for Skin Graft Applications by Templating Water-in-Water Pickering Emulsions (2019)
Journal Article
Celik, S., Dominici, S., Filby, B., Das, A., Madden, L. A., & Paunov, V. N. (2019). Fabrication of Human Keratinocyte Cell Clusters for Skin Graft Applications by Templating Water-in-Water Pickering Emulsions. Biomimetics, 4(3), Article 50. https://doi.org/10.3390/biomimetics4030050

Most current methods for the preparation of tissue spheroids require complex materials, involve tedious physical steps and are generally not scalable. We report a novel alternative, which is both inexpensive and up-scalable, to produce large quantiti... Read More about Fabrication of Human Keratinocyte Cell Clusters for Skin Graft Applications by Templating Water-in-Water Pickering Emulsions.

Breathing new life into old antibiotics: Overcoming antibacterial resistance by antibiotic-loaded nanogel carriers with cationic surface functionality (2019)
Journal Article
Weldrick, P. J., Iveson, S., Hardman, M. J., & Paunov, V. N. (2019). Breathing new life into old antibiotics: Overcoming antibacterial resistance by antibiotic-loaded nanogel carriers with cationic surface functionality. Nanoscale, 11(21), 10472-10485. https://doi.org/10.1039/c8nr10022e

Multidrug-resistant pathogens are prevalent in chronic wounds. There is an urgent need to develop novel antimicrobials and formulation strategies that can overcome antibiotic resistance and provide a safe alternative to traditional antibiotics. This... Read More about Breathing new life into old antibiotics: Overcoming antibacterial resistance by antibiotic-loaded nanogel carriers with cationic surface functionality.

Bioimprint aided cell recognition and depletion of human leukemic HL60 cells from peripheral blood (2019)
Journal Article
Das, A. A., Medlock, J., Liang, H., Nees, D., Allsup, D. J., Madden, L. A., & Paunov, V. N. (2019). Bioimprint aided cell recognition and depletion of human leukemic HL60 cells from peripheral blood. Journal of Materials Chemistry B, 7(22), 3497-3504. https://doi.org/10.1039/c9tb00679f

We report a large scale preparation of bioimprints of layers of cultured human leukemic HL60 cells which can perform cell shape and size recognition from a mixture with peripheral blood mononuclear cells (PBMCs). We demonstrate that the bioimprint-ce... Read More about Bioimprint aided cell recognition and depletion of human leukemic HL60 cells from peripheral blood.