Skip to main content

Research Repository

Advanced Search

Outputs (2)

Unique Coexistence of Two Resistive Switching Modes in a Memristor Device Enables Multifunctional Neuromorphic Computing Properties (2024)
Journal Article
Jaafar, A. H., Al Habsi, S. K. S., Braben, T., Venables, C., Francesconi, M. G., Stasiuk, G. J., & Kemp, N. T. (2024). Unique Coexistence of Two Resistive Switching Modes in a Memristor Device Enables Multifunctional Neuromorphic Computing Properties. ACS Applied Materials & Interfaces, 16(33), 43816–43826. https://doi.org/10.1021/acsami.4c07820

We report on hybrid memristor devices consisting of germanium dioxide nanoparticles (GeO2 NP) embedded within a poly(methyl methacrylate) (PMMA) thin film. Besides exhibiting forming-free resistive switching and an uncommon β€œON” state in pristine con... Read More about Unique Coexistence of Two Resistive Switching Modes in a Memristor Device Enables Multifunctional Neuromorphic Computing Properties.

Is the PEGylation of indium phosphide/zinc sulphide quantum dots the first step in creating a platelet biocompatible multimodal imaging agent? (2024)
Thesis
Booth, Z. Is the PEGylation of indium phosphide/zinc sulphide quantum dots the first step in creating a platelet biocompatible multimodal imaging agent?. (Thesis). Hull York Medical School. https://hull-repository.worktribe.com/output/4790560

Background:
Indium phosphide/zinc sulphide (InP/ZnS) quantum dots (QDs) are semiconductive nanoparticles that have received growing focus due to the perception that they are safer than heavy metal based QDs. InP/ZnS QDs possess a highly fluorescent... Read More about Is the PEGylation of indium phosphide/zinc sulphide quantum dots the first step in creating a platelet biocompatible multimodal imaging agent?.