Skip to main content

Research Repository

Advanced Search

Outputs (833)

Measuring AI Fairness in a Continuum Maintaining Nuances: A Robustness Case Study (2024)
Journal Article
Paxton, K., Aslansefat, K., Thakker, D., & Papadopoulos, Y. (2024). Measuring AI Fairness in a Continuum Maintaining Nuances: A Robustness Case Study. IEEE Internet Computing, 28(5), 11-19. https://doi.org/10.1109/MIC.2024.3450815

As machine learning is increasingly making decisions about hiring or healthcare, we want AI to treat ethnic and socioeconomic groups fairly. Fairness is currently measured by comparing the average accuracy of reasoning across groups. We argue that im... Read More about Measuring AI Fairness in a Continuum Maintaining Nuances: A Robustness Case Study.

Devising a Responsible Framework for Air Quality Sensor Placement (2024)
Presentation / Conference Contribution
Westcarr, J., Gunturi, V. M. V., Cabaneros, S. M., Raja, R., Thakker, D., & Porter, A. (2024, July). Devising a Responsible Framework for Air Quality Sensor Placement. Presented at 2024 IEEE International Conference on Omni-layer Intelligent Systems (COINS), London, United Kingdom

A major challenge faced when developing smart, sustainable urban environments is the reduction of air pollutants that adversely impact citizens' health. The UK has implemented strategies such as clean air zones (CAZs) coupled with the use of sensor t... Read More about Devising a Responsible Framework for Air Quality Sensor Placement.

Disease progression in chronic heart failure is linear: Insights from multistate modelling (2024)
Journal Article
Kazmi, S., Kambhampati, C., Rigby, A. S., Cleland, J. G. F., Kazmi, K. S., Cuthbert, J., Pellicori, P., & Clark, A. L. (online). Disease progression in chronic heart failure is linear: Insights from multistate modelling. European journal of heart failure, https://doi.org/10.1002/ejhf.3400

Aims: Understanding the pattern of disease progression in chronic heart failure (HF) may inform patient care and healthcare system design. We used a four-state Markov model to describe the disease trajectory of patients with HF. Methods and results:... Read More about Disease progression in chronic heart failure is linear: Insights from multistate modelling.

A new class of zero-truncated counting models and its application (2024)
Journal Article
Tang, X. P., Tian, Y. Z., Wu, C. H., Wang, Y., & Mian, Z. B. (2024). A new class of zero-truncated counting models and its application. Communications in Statistics - Simulation and Computation, https://doi.org/10.1080/03610918.2024.2384561

Count data is a type of data derived from the number of times an event occurs per unit of time, and zero-truncated count data refers to count data without zero, which often appears in various fields. In this paper, a new zero-truncated Bell (ZTBell)... Read More about A new class of zero-truncated counting models and its application.

Enquiry-based learning pedagogy – Design, development and delivery of a reproducible robotics framework (2024)
Presentation / Conference Contribution
Walker, A., Diaz, K. R. V., McKie, D., & Iqbal, J. (2024, February). Enquiry-based learning pedagogy – Design, development and delivery of a reproducible robotics framework. Presented at Ninth International Congress on Information and Communication Technology (ICICT 2024), London

Hardware-inspired enquiry-based learning (EBL) is an emerging pedagogy to develop transferable engineering skills in students. This paper is aimed at unleashing the potential of this pedagogy via the multidisciplinary domain of robotics to learn the... Read More about Enquiry-based learning pedagogy – Design, development and delivery of a reproducible robotics framework.

A hybrid contextual framework to predict severity of infectious disease: COVID-19 case study (2024)
Journal Article
Azam, M. M. B., Anwaar, F., Khan, A. M., Anwar, M., Ghani, H. B. A., Eisa, T. A. E., & Abdelmaboud, A. (2024). A hybrid contextual framework to predict severity of infectious disease: COVID-19 case study. Egyptian Informatics Journal, 27, Article 100508. https://doi.org/10.1016/j.eij.2024.100508

Infectious disease is a particular type of disorder triggered by organisms and transmitted directly or indirectly from an infected one like COVID-19. The global economy and public health are immensely affected by COVID-19, a recently emerging infecti... Read More about A hybrid contextual framework to predict severity of infectious disease: COVID-19 case study.

Global Knowledge, Local Impact: Domain Adaptation and Classification for Obesity in the UAE (2024)
Presentation / Conference Contribution
Raza, M., Khattak, A., Abbas, W., & Khan, A. (2024, June). Global Knowledge, Local Impact: Domain Adaptation and Classification for Obesity in the UAE. Presented at 37th IEEE International Symposium on Computer-Based Medical Systems (CBMS), Guadalajara, Mexico

Obesity, a global public health concern, is escalating rapidly, especially in the Middle East, with the United Arab Emirates (UAE) witnessing one of the highest prevalence rates among adults and children. This multifactorial health issue is influence... Read More about Global Knowledge, Local Impact: Domain Adaptation and Classification for Obesity in the UAE.

LLM-guided Instance-level Image Manipulation with Diffusion U-Net Cross-Attention Maps (2024)
Presentation / Conference Contribution
Palaev, A., Khan, A., & Kazmi, A. (2024, November). LLM-guided Instance-level Image Manipulation with Diffusion U-Net Cross-Attention Maps. Paper presented at The 35th British Machine Vision Conference, Glasgow

The advancement of text-to-image synthesis has introduced powerful generative models capable of creating realistic images from textual prompts. However, precise control over image attributes remains challenging, especially at the instance level. Whil... Read More about LLM-guided Instance-level Image Manipulation with Diffusion U-Net Cross-Attention Maps.

Spatial Spectral Transformer with Conditional Position Encoding for Hyperspectral Image Classification (2024)
Journal Article
Ahmad, M., Usama, M., Khan, A. M., Distefano, S., Altuwaijri, H. A., & Mazzara, M. (2024). Spatial Spectral Transformer with Conditional Position Encoding for Hyperspectral Image Classification. IEEE Geoscience and Remote Sensing Letters, 1-1. https://doi.org/10.1109/lgrs.2024.3431188

In Transformer-based Hyperspectral Image Classification (HSIC), predefined positional encodings (PEs) are crucial for capturing the order of each input token. However, their typical representation as fixed-dimension learnable vectors makes it challen... Read More about Spatial Spectral Transformer with Conditional Position Encoding for Hyperspectral Image Classification.

User Engagement Triggers in Social Media Discourse on Biodiversity Conservation (2024)
Journal Article
Dethlefs, N., & Cuayáhuitl, H. (online). User Engagement Triggers in Social Media Discourse on Biodiversity Conservation. ACM Transactions on Social Computing, https://doi.org/10.1145/3662685

Studies in digital conservation have increasingly used social media in recent years as a source of data to understand the interactions between humans and nature, model and monitor biodiversity, and analyse online discourse about the conservation of s... Read More about User Engagement Triggers in Social Media Discourse on Biodiversity Conservation.