Skip to main content

Research Repository

Advanced Search

Outputs (5)

New catalysts bearing chelate ligands for ring opening polymerization studies. (2023)
Thesis
Zhang, X. New catalysts bearing chelate ligands for ring opening polymerization studies. (Thesis). University of Hull. https://hull-repository.worktribe.com/output/4443364

Chapter 1: The accumulation of traditional polymer (plastic) pollution has led people to start looking for biodegradable plastics as alternatives. This first chapter provides information on the concept and the development of biodegradable polymers. I... Read More about New catalysts bearing chelate ligands for ring opening polymerization studies..

Ring Opening Polymerization of Lactides and Lactones by Multimetallic Titanium Complexes Derived from the Acids Ph2C(X)CO2H (X = OH, NH2) (2022)
Journal Article
Zhang, X., Prior, T. J., Chen, K., Santoro, O., & Redshaw, C. (2022). Ring Opening Polymerization of Lactides and Lactones by Multimetallic Titanium Complexes Derived from the Acids Ph2C(X)CO2H (X = OH, NH2). Catalysts, 12(9), Article 935. https://doi.org/10.3390/catal12090935

The reactions of the titanium alkoxide [Ti(OR)4] (R = Me, nPr, iPr, tBu) with the acids 2,2’-Ph2C(X)(CO2H), where X = OH and NH2, i.e., benzilic acid (2,2’-diphenylglycolic acid, L1H2), and 2,2’-diphenylglycine (L2H3), have been investigated. The var... Read More about Ring Opening Polymerization of Lactides and Lactones by Multimetallic Titanium Complexes Derived from the Acids Ph2C(X)CO2H (X = OH, NH2).

Niobium and Tantalum complexes derived from the acids Ph<inf>2</inf>C(X)CO<inf>2</inf>H (X = OH, NH<inf>2</inf>): synthesis, structure and ROP capability (2022)
Journal Article
Zhang, X., Prior, T. J., & Redshaw, C. (2022). Niobium and Tantalum complexes derived from the acids Ph2C(X)CO2H (X = OH, NH2): synthesis, structure and ROP capability. New journal of chemistry = Nouveau journal de chimie, https://doi.org/10.1039/d2nj02527b

Reaction of benzilic acid, Ph2C(OH)(CO2H), L1H2, with equimolar amounts of M(OR)5 (M = Nb, Ta) led, following work-up, to the tetranuclear complexes [Nb4(OEt)8(L1)4(μ-O)2] (1) or [Ta4(OEt)8(L1)4(μ-O)2]·0.5MeCN (2·0.5MeCN), respectively. Similar use o... Read More about Niobium and Tantalum complexes derived from the acids Ph<inf>2</inf>C(X)CO<inf>2</inf>H (X = OH, NH<inf>2</inf>): synthesis, structure and ROP capability.

Alkoxy-functionalized schiff-base ligation at aluminum and zinc: Synthesis, structures and rop capability (2021)
Journal Article
Zhang, X., Chen, K., Chicoma, M., Goins, K., Prior, T. J., Nile, T. A., & Redshaw, C. (2021). Alkoxy-functionalized schiff-base ligation at aluminum and zinc: Synthesis, structures and rop capability. Catalysts, 11(9), Article 1090. https://doi.org/10.3390/catal11091090

The Schiff-base compounds 2,4-di-tert-butyl-6-(((3,4,5-trimethoxyphenyl)imino)methyl)phenol (L1H), 2,4-di-tert-butyl-6-(((2,4,6-trimethoxyphenyl)imino)methyl)phenol (L2H), 2,4-di-tert-butyl-6-(((2,4-trimethoxyphenyl)imino)methyl)phenol) (L3H) derived... Read More about Alkoxy-functionalized schiff-base ligation at aluminum and zinc: Synthesis, structures and rop capability.

Synthesis of Biodegradable Polymers: A Review on the Use of Schiff-Base Metal Complexes as Catalysts for the Ring Opening Polymerization (ROP) of Cyclic Esters (2020)
Journal Article
Santoro, O., Zhang, X., & Redshaw, C. (2020). Synthesis of Biodegradable Polymers: A Review on the Use of Schiff-Base Metal Complexes as Catalysts for the Ring Opening Polymerization (ROP) of Cyclic Esters. Catalysts, 10(7), 1-49. https://doi.org/10.3390/catal10070800

This review describes the recent advances (from 2008 onwards) in the use of Schiff-base metal complexes as catalysts for the ring opening polymerization (ROP) of cyclic esters. The synthesis and structure of the metal complexes, as well as all aspect... Read More about Synthesis of Biodegradable Polymers: A Review on the Use of Schiff-Base Metal Complexes as Catalysts for the Ring Opening Polymerization (ROP) of Cyclic Esters.