Skip to main content

Research Repository

Advanced Search

Outputs (25)

Electrochemical Goniometry: Keystone Reactivity at the Three-Phase Boundary (2024)
Journal Article
Varley, T. S., Lawrence, N. S., & Wadhawan, J. D. (online). Electrochemical Goniometry: Keystone Reactivity at the Three-Phase Boundary. Journal of Solid State Electrochemistry, https://doi.org/10.1007/s10008-024-05932-4

Contact angles of liquid, spherical cap droplets immobilised on an electrode surface and bathed by a fluid are important, quantifiable measures of the liquid/fluid interfacial tension. Optical goniometry, even if computer assisted, suffers when the c... Read More about Electrochemical Goniometry: Keystone Reactivity at the Three-Phase Boundary.

Operando study of the dynamic evolution of multiple Fe-rich intermetallics of an Al recycled alloy in solidification by synchrotron X-ray and machine learning (2024)
Journal Article
Xiang, K., Qin, L., Zhao, Y., Huang, S., Du, W., Boller, E., Rack, A., Li, M., & Mi, J. (2024). Operando study of the dynamic evolution of multiple Fe-rich intermetallics of an Al recycled alloy in solidification by synchrotron X-ray and machine learning. Acta Materialia, 279, Article 120267. https://doi.org/10.1016/j.actamat.2024.120267

Using synchrotron X-ray diffraction, tomography and machine-learning enabled phase segmentation strategy, we have studied under operando conditions the nucleation, co-growth and dynamic interplays among the dendritic and multiple intermetallic phases... Read More about Operando study of the dynamic evolution of multiple Fe-rich intermetallics of an Al recycled alloy in solidification by synchrotron X-ray and machine learning.

Enhanced anticancer effect of lysozyme-functionalized metformin-loaded shellac nanoparticles on a 3D cell model: role of the nanoparticle and payload concentrations (2024)
Journal Article
Wang, A., Madden, L. A., & Paunov, V. N. (online). Enhanced anticancer effect of lysozyme-functionalized metformin-loaded shellac nanoparticles on a 3D cell model: role of the nanoparticle and payload concentrations. Biomaterials science / Royal Society of Chemistry, https://doi.org/10.1039/d4bm00692e

Here we used a 3D human hepatic tumour cell culture model to assess the in vitro efficacy of “active” metformin-loaded nanoparticles (NPs) as anticancer therapeutics. The metformin nanocarrier design was repurposed from previous studies targeting bac... Read More about Enhanced anticancer effect of lysozyme-functionalized metformin-loaded shellac nanoparticles on a 3D cell model: role of the nanoparticle and payload concentrations.

Green pathways for biomass transformation: A holistic evaluation of deep eutectic solvents (DESs) through life cycle and techno-economic assessment (2024)
Journal Article
Yiin, C. L., Lai, Z. Y., Chin, B. L. F., Lock, S. S. M., Cheah, K. W., Taylor, M. J., Al-Gailani, A., Kolosz, B. W., & Chan, Y. H. (2024). Green pathways for biomass transformation: A holistic evaluation of deep eutectic solvents (DESs) through life cycle and techno-economic assessment. Journal of cleaner production, 470, Article 143248. https://doi.org/10.1016/j.jclepro.2024.143248

The utilization of renewable biomass resources to manufacture biofuels, chemicals, and materials has garnered considerable attention. Deep eutectic solvents (DESs) have surfaced as a promising instrument within the realm of biomass conversion, owing... Read More about Green pathways for biomass transformation: A holistic evaluation of deep eutectic solvents (DESs) through life cycle and techno-economic assessment.

Technoeconomic feasibility of producing clean fuels from waste plastics: A novel process model (2024)
Journal Article
Al-Qadri, A. A., Ahmed, U., Mozahar Hossain, M., Ahmad, N., Gani Abdul Jameel, A., Zahid, U., & Zein, S. H. (2024). Technoeconomic feasibility of producing clean fuels from waste plastics: A novel process model. Energy Conversion and Management, 316, Article 118822. https://doi.org/10.1016/j.enconman.2024.118822

Plastic waste is a problematic issue impacting the environment and human health. A proper recycling of plastics to valuable products is highly needed to meet the increase in energy demand. Plastics have high heating value; therefore, the thermochemic... Read More about Technoeconomic feasibility of producing clean fuels from waste plastics: A novel process model.

Sustainable syngas production: Economic and circular economy benefits of PET waste gasification (2024)
Journal Article
Okoye, I. J., Zein, S. H., Oko, E., & Jalil, A. A. (2024). Sustainable syngas production: Economic and circular economy benefits of PET waste gasification. Progress in Rubber, Plastics and Recycling Technology, https://doi.org/10.1177/14777606241262888

This paper promotes awareness of the circular economy as a superior waste disposal system alternative. The novelty of this study is to model cleaner energy generation from the gasification of polyethene terephthalate (PET) waste accompanied by a deta... Read More about Sustainable syngas production: Economic and circular economy benefits of PET waste gasification.

Techno economic and life cycle assessment of olefin production through CO2 hydrogenation within the power-to-X concept (2024)
Journal Article
Cuevas-Castillo, G. A., Michailos, S., Akram, M., Hughes, K., Ingham, D., & Pourkashanian, M. (2024). Techno economic and life cycle assessment of olefin production through CO2 hydrogenation within the power-to-X concept. Journal of cleaner production, 469, Article 143143. https://doi.org/10.1016/j.jclepro.2024.143143

The paper deals with exhaustive process modelling, techno-economic and life cycle assessment (TEA/LCA) of olefin (ethylene and propylene) production through captured CO2 and electrolytic hydrogen. Olefins are important building block chemicals with s... Read More about Techno economic and life cycle assessment of olefin production through CO2 hydrogenation within the power-to-X concept.

Silver Nanoparticle-Immobilized Schiff-Base Macrocycles as Nanozymes with Peroxidase Mimic Activity for Antibacterial Films (2024)
Journal Article
Wang, K., Redshaw, C., Zhao, X., Wang, A., Chen, K., & Qiao, Y. (2024). Silver Nanoparticle-Immobilized Schiff-Base Macrocycles as Nanozymes with Peroxidase Mimic Activity for Antibacterial Films. ACS Applied Nano Materials, 7(14), 16274–16282. https://doi.org/10.1021/acsanm.4c02258

The development of nanozymes has emerged as a promising pathway for combating bacterial infections. In this work, Ag/Schiff base nanozymes are obtained through the in situ reduction method on [2 + 3] Schiff base macrocycles using eco-friendly reducta... Read More about Silver Nanoparticle-Immobilized Schiff-Base Macrocycles as Nanozymes with Peroxidase Mimic Activity for Antibacterial Films.

Comparative energy and exergy analysis of ortho-para hydrogen and non-ortho-para hydrogen conversion in hydrogen liquefaction (2024)
Journal Article
Ahmad, A., Oko, E., & Ibhadon, A. (2024). Comparative energy and exergy analysis of ortho-para hydrogen and non-ortho-para hydrogen conversion in hydrogen liquefaction. International Journal of Hydrogen Energy, 78, 991-1003. https://doi.org/10.1016/j.ijhydene.2024.06.368

This study reports the comparative energy and exergy analysis of ortho-para hydrogen and non-ortho-para hydrogen conversion in hydrogen liquefaction process. Two cases were simulated, case A – hydrogen liquefaction with ortho-parahydrogen conversion... Read More about Comparative energy and exergy analysis of ortho-para hydrogen and non-ortho-para hydrogen conversion in hydrogen liquefaction.

Repurposing lignin rich biorefinery waste streams into the next generation of sustainable solid fuels (2024)
Journal Article
Taylor, M. J., Hornsby, K., Cheah, K. W., Hurst, P., Walker, S., & Skoulou, V. (2024). Repurposing lignin rich biorefinery waste streams into the next generation of sustainable solid fuels. Sustainable Chemistry for the Environment, 7, Article 100123. https://doi.org/10.1016/j.scenv.2024.100123

Value added lignin rich waste sludges from biorefinery processes are, as yet untapped valuable feedstocks that can be reformed into clean, high quality solid fuels. By water washing sludges produced from base hydrolyzed waste, a material stripped of... Read More about Repurposing lignin rich biorefinery waste streams into the next generation of sustainable solid fuels.