Skip to main content

Research Repository

Advanced Search

Unifying femtosecond and picosecond single-pulse magnetic switching in Gd-Fe-Co

Jakobs, F.; Ostler, T. A.; Lambert, C. H.; Yang, Y.; Salahuddin, S.; Wilson, R. B.; Gorchon, J.; Bokor, J.; Atxitia, U.

Authors

F. Jakobs

T. A. Ostler

C. H. Lambert

Y. Yang

S. Salahuddin

R. B. Wilson

J. Gorchon

J. Bokor

U. Atxitia



Abstract

Many questions are still open regarding the physical mechanisms behind the magnetic switching in Gd-Fe-Co alloys by single optical pulses. Phenomenological models suggest a femtosecond scale exchange relaxation between sublattice magnetization as the driving mechanism for switching. The recent observation of thermally induced switching in Gd-Fe-Co by using both several picosecond optical laser pulse as well as electric current pulses has questioned this previous understanding. This has raised the question of whether or not the same switching mechanics are acting at the femtosecond and picosecond scales. In this work, we aim at filling this gap in the understanding of the switching mechanisms behind thermal single-pulse switching. To that end, we have studied experimentally thermal single-pulse switching in Gd-Fe-Co alloys, for a wide range of system parameters, such as composition, laser power, and pulse duration. We provide a quantitative description of the switching dynamics using atomistic spin dynamics methods with excellent agreement between the model and our experiments across a wide range of parameters and timescales, ranging from femtoseconds to picoseconds. Furthermore, we find distinct element-specific damping parameters as a key ingredient for switching with long picosecond pulses and argue that switching with pulse durations as long as 15 ps is possible due to a low damping constant of Gd. Our findings can be easily extended to speed up dynamics in other contexts where ferrimagnetic Gd-Fe-Co alloys have been already demonstrated to show fast and energy-efficient processes, e.g., domain-wall motion in a track and spin-orbit torque switching in spintronics devices.

Citation

Jakobs, F., Ostler, T. A., Lambert, C. H., Yang, Y., Salahuddin, S., Wilson, R. B., …Atxitia, U. (2021). Unifying femtosecond and picosecond single-pulse magnetic switching in Gd-Fe-Co. Physical Review B, 103(10), Article 104422. https://doi.org/10.1103/PhysRevB.103.104422

Journal Article Type Article
Acceptance Date Feb 8, 2021
Online Publication Date Mar 15, 2021
Publication Date Mar 1, 2021
Deposit Date Jun 16, 2022
Publicly Available Date Mar 29, 2024
Journal Physical Review B
Print ISSN 2469-9950
Electronic ISSN 2469-9969
Publisher American Physical Society
Peer Reviewed Peer Reviewed
Volume 103
Issue 10
Article Number 104422
DOI https://doi.org/10.1103/PhysRevB.103.104422
Public URL https://hull-repository.worktribe.com/output/4015162

Files




You might also like



Downloadable Citations