Datong Gao
A novel direct steam generation system based on the high-vacuum insulated flat plate solar collector
Gao, Datong; Li, Jing; Ren, Xiao; Hu, Tianxiang; Pei, Gang
Abstract
Process steam is an important product in the industrial sector but the traditional steam boiler will lead to tremendous fossil fuel consumption and carbon emissions. The non-concentrating solar collectors have a huge potential for process steam generation but their application potential has not been fully explored. In this paper, a high-efficient evacuated flat plate solar collector used for direct steam generation is proposed. Its thermal performance in both direct steam generation mode and pressurization water mode is presented via experiment test and a validated numerical model. The results indicate that the direct steam generation mode can obtain a 10% enhancement (absolute value) of the thermal efficiency compared with the pressurization water mode. The thermal radiant losses of the solar collector can be suppressed and the heat transfer coefficient of the working fluid can also be elevated. Furthermore, a dual-mode evacuated flat plate solar system is proposed to produce thermal energy for space heating in the heating season and generate steam in the non-heating season, thereby solving the solar seasonal mismatch problem for the traditional solar thermal heating system. The comparison with the state-of-the-art study manifests that the dual-mode system proposed in this paper has better performance all year round.
Citation
Gao, D., Li, J., Ren, X., Hu, T., & Pei, G. (2022). A novel direct steam generation system based on the high-vacuum insulated flat plate solar collector. Renewable energy, 197, 966-977. https://doi.org/10.1016/j.renene.2022.07.102
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 19, 2022 |
Online Publication Date | Aug 1, 2022 |
Publication Date | 2022-09 |
Deposit Date | Nov 11, 2022 |
Publicly Available Date | Aug 2, 2023 |
Journal | Renewable Energy |
Print ISSN | 0960-1481 |
Electronic ISSN | 1879-0682 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 197 |
Pages | 966-977 |
DOI | https://doi.org/10.1016/j.renene.2022.07.102 |
Keywords | Direct steam generation; Solar collector; Solar energy |
Public URL | https://hull-repository.worktribe.com/output/4064798 |
Files
Accepted manuscript
(1.8 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
Editorial: Advanced solar utilization and control technologies in buildings
(2024)
Journal Article
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search