Dr Alex Richings A.J.Richings@hull.ac.uk
Lecturer in Data Science, Artificial Intelligence and Modelling
Unravelling the physics of multiphase AGN winds through emission line tracers
Richings, Alexander J.; Faucher-Giguère, Claude André; Stern, Jonathan
Authors
Claude André Faucher-Giguère
Jonathan Stern
Abstract
Observations of emission lines in active galactic nuclei (AGNs) often find fast (∼1000 km s−1) outflows extending to kiloparsec scales, seen in ionized, neutral atomic and molecular gas. In this work we present radiative transfer calculations of emission lines in hydrodynamic simulations of AGN outflows driven by a hot wind bubble, including non-equilibrium chemistry, to explore how these lines trace the physical properties of the multiphase outflow. We find that the hot bubble compresses the line-emitting gas, resulting in higher pressures than in the ambient interstellar medium or that would be produced by the AGN radiation pressure. This implies that observed emission line ratios such as [O IV]25 μm/[Ne II]12 μm, [Ne V]14 μm/[Ne II]12 μm, and [N III]57 μm/[N II]122 μm constrain the presence of the bubble and hence the outflow driving mechanism. However, the line-emitting gas is under-pressurized compared to the hot bubble itself, and much of the line emission arises from gas that is out of pressure, thermal and/or chemical equilibrium. Our results thus suggest that assuming equilibrium conditions, as commonly done in AGN line emission models, is not justified if a hot wind bubble is present. We also find that ≳50 per cent of the mass outflow rate, momentum flux, and kinetic energy flux of the outflow are traced by lines such as [N II]122 μm and [Ne III]15 μm (produced in the 104 K phase) and [C II]158 μm (produced in the transition from 104 K to 100 K).
Citation
Richings, A. J., Faucher-Giguère, C. A., & Stern, J. (2021). Unravelling the physics of multiphase AGN winds through emission line tracers. Monthly notices of the Royal Astronomical Society, 503(2), 1568-1585. https://doi.org/10.1093/mnras/stab556
Journal Article Type | Article |
---|---|
Acceptance Date | Feb 20, 2021 |
Online Publication Date | Feb 27, 2021 |
Publication Date | May 1, 2021 |
Deposit Date | Nov 28, 2022 |
Publicly Available Date | Nov 30, 2022 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Oxford University Press |
Peer Reviewed | Peer Reviewed |
Volume | 503 |
Issue | 2 |
Pages | 1568-1585 |
DOI | https://doi.org/10.1093/mnras/stab556 |
Keywords | Astrochemistry; Galaxies: active; Quasars: emission lines; Quasars: general |
Public URL | https://hull-repository.worktribe.com/output/4132487 |
Publisher URL | https://academic.oup.com/mnras/article/503/2/1568/6153871 |
Files
Published article
(16.9 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0
Copyright Statement
© 2021 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
You might also like
Tests of subgrid models for star formation using simulations of isolated disc galaxies
(2024)
Journal Article
The interplay between dust and radiation
(2024)
Book Chapter
158 μm emission as an indicator of galaxy star formation rate
(2023)
Journal Article
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search