Skip to main content

Research Repository

Advanced Search

Type inference in flexible model-driven engineering using classification algorithms

Zolotas, Athanasios; Matragkas, Nicholas; Devlin, Sam; Kolovos, Dimitrios S.; Paige, Richard F.

Authors

Athanasios Zolotas

Nicholas Matragkas

Sam Devlin

Dimitrios S. Kolovos

Richard F. Paige



Abstract

Flexible or bottom-up model-driven engineering (MDE) is an emerging approach to domain and systems modelling. Domain experts, who have detailed domain knowledge, typically lack the technical expertise to transfer this knowledge using traditional MDE tools. Flexible MDE approaches tackle this challenge by promoting the use of simple drawing tools to increase the involvement of domain experts in the language definition process. In such approaches, no metamodel is created upfront, but instead the process starts with the definition of example models that will be used to infer the metamodel. Pre-defined metamodels created by MDE experts may miss important concepts of the domain and thus restrict their expressiveness. However, the lack of a metamodel, that encodes the semantics of conforming models has some drawbacks, among others that of having models with elements that are unintentionally left untyped. In this paper, we propose the use of classification algorithms to help with the inference of such untyped elements. We evaluate the proposed approach in a number of random generated example models from various domains. The correct type prediction varies from 23 to 100% depending on the domain, the proportion of elements that were left untyped and the prediction algorithm used.

Citation

Zolotas, A., Matragkas, N., Devlin, S., Kolovos, D. S., & Paige, R. F. (2019). Type inference in flexible model-driven engineering using classification algorithms. Software and systems modeling, 18(1), 345–366. https://doi.org/10.1007/s10270-018-0658-5

Journal Article Type Article
Acceptance Date Jan 11, 2018
Online Publication Date Jan 23, 2018
Publication Date 2019-02
Deposit Date Feb 6, 2018
Publicly Available Date Feb 13, 2018
Journal Software and Systems Modeling
Print ISSN 1619-1366
Electronic ISSN 1619-1374
Publisher Springer Verlag
Peer Reviewed Peer Reviewed
Volume 18
Issue 1
Pages 345–366
DOI https://doi.org/10.1007/s10270-018-0658-5
Keywords Model-driven engineering (MDE); Flexible model-driven engineering; Bottom-up metamodelling; Type inference; Classification and regression trees; Random forests
Public URL https://hull-repository.worktribe.com/output/584411
Publisher URL https://link.springer.com/article/10.1007/s10270-018-0658-5
Copyright Statement © The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Files

Article (1.4 Mb)
PDF

Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/

Copyright Statement
© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.





You might also like



Downloadable Citations