Dr Holly Wilkinson H.N.Wilkinson@hull.ac.uk
Lecturer in Wound Healing
A novel silver bioactive glass elicits antimicrobial efficacy against Pseudomonas aeruginosa and Staphylococcus aureus in an ex vivo skin wound biofilm model
Wilkinson, Holly N.; Iveson, Sammi; Catherall, Paul; Hardman, Matthew J.
Authors
Sammi Iveson
Paul Catherall
Professor Matthew Hardman M.Hardman@hull.ac.uk
Chair in Wound Healing / HYMS Director of Research
Abstract
Biofilm infection is now understood to be a potent contributor to the recalcitrant nature of chronic wounds. Bacterial biofilms evade the host immune response and show increased resistance to antibiotics. Along with improvements in antibiotic stewardship, effective new anti-biofilm therapies are urgently needed for effective wound management. Previous studies have shown that bioactive glass (Bg) is able to promote healing with moderate bactericidal activity. Here we tested the antimicrobial efficacy of a novel BG incorporating silver (BgAg), against both planktonic and biofilm forms of the wound-relevant bacteria Pseudomonas aeruginosa and Staphylococcus aureus. BgAg was stable, long lasting, and potently effective against planktonic bacteria in time-kill assays (6-log reduction in bacterial viability within 2 h) and in agar diffusion assays. BgAg reduced bacterial load in a physiologically relevant ex vivo porcine wound biofilm model; P. aeruginosa (2-log reduction) and S. aureus (3-log reduction). BgAg also conferred strong effects against P. aeruginosa biofilm virulence, reducing both protease activity and virulence gene expression. Co-culture biofilms appeared more resistant to BgAg, where a selective reduction in S. aureus was observed. Finally, BgAg was shown to benefit the host response to biofilm infection, directly reducing host tissue cell death. Taken together, the findings provide evidence that BgAg elicits potent antimicrobial effects against planktonic and single-species biofilms, with beneficial effects on the host tissue response. Further investigations are required to elucidate the specific consequences of BG administration on polymicrobial biofilms, and further explore the effects on host–microbe interactions.
Citation
Wilkinson, H. N., Iveson, S., Catherall, P., & Hardman, M. J. (2018). A novel silver bioactive glass elicits antimicrobial efficacy against Pseudomonas aeruginosa and Staphylococcus aureus in an ex vivo skin wound biofilm model. Frontiers in Microbiology, 9(JUL), Article 1450. https://doi.org/10.3389/fmicb.2018.01450
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 11, 2018 |
Online Publication Date | Jul 3, 2018 |
Publication Date | Jul 3, 2018 |
Deposit Date | Jul 9, 2018 |
Publicly Available Date | Jul 9, 2018 |
Journal | Frontiers in Microbiology |
Print ISSN | 1664-302X |
Publisher | Frontiers Media |
Peer Reviewed | Peer Reviewed |
Volume | 9 |
Issue | JUL |
Article Number | 1450 |
DOI | https://doi.org/10.3389/fmicb.2018.01450 |
Keywords | Microbiology (medical); Microbiology |
Public URL | https://hull-repository.worktribe.com/output/916814 |
Publisher URL | https://www.frontiersin.org/articles/10.3389/fmicb.2018.01450/full |
Contract Date | Jul 9, 2018 |
Files
Article
(6 Mb)
PDF
Copyright Statement
© 2018 Wilkinson, Iveson, Catherall and Hardman. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
You might also like
The Skin Microbiome: Current Landscape and Future Opportunities
(2023)
Journal Article
Epithelial arginase-1 is a key mediator of age-associated delayed healing in vaginal injury
(2022)
Journal Article
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search