Skip to main content

Research Repository

Advanced Search

CDA: A clustering degree based influential spreader identification algorithm in weighted complex network

Wang, Qian; Ren, Jiadong; Wang, Yu; Zhang, Bing; Cheng, Yongqiang; Zhao, Xiaolin


Qian Wang

Jiadong Ren

Yu Wang

Bing Zhang

Yongqiang Cheng

Xiaolin Zhao


Identifying the most influential spreaders in a weighted complex network is vital for optimizing utilization of the network structure and promoting the information propagation. Most existing algorithms focus on node centrality, which consider more connectivity than clustering. In this paper, a novel algorithm based on clustering degree algorithm (CDA) is proposed to identify the most influential spreaders in a weighted network. First, the weighted degree of a node is defined according to the node degree and strength. Then, based on the node weighted degree, the clustering degree of a node is calculated in respect to the network topological structure. Finally, the propagation capability of a node is achieved by accounting the clustering degree of the node and the contribution from its neighbors. In order to evaluate the performance of the proposed CDA algorithm, the susceptible-infected-recovered model is adopted to simulate the propagation process in real-world networks. The experiment results have showed that CDA is the most effective algorithm in terms of Kendall's tau coefficient and with the highest accuracy in influential spreader identification compared with other algorithms such as weighted degree centrality, weighted closeness centrality, evidential centrality, and evidential semilocal centrality.


Wang, Q., Ren, J., Wang, Y., Zhang, B., Cheng, Y., & Zhao, X. (2018). CDA: A clustering degree based influential spreader identification algorithm in weighted complex network. IEEE Access, 6, 19550-19559.

Journal Article Type Article
Acceptance Date Feb 15, 2018
Publication Date Apr 4, 2018
Deposit Date Jul 19, 2018
Publicly Available Date Jul 20, 2018
Journal IEEE Access
Electronic ISSN 2169-3536
Publisher Institute of Electrical and Electronics Engineers
Peer Reviewed Peer Reviewed
Volume 6
Pages 19550-19559
Keywords Clustering algorithms; Complex networks; Software; Weight measurement; Tuning; Software algorithms; Indexes
Public URL
Publisher URL


Article (5.7 Mb)

Copyright Statement
© 2018 IEEE. Translations and content mining are permitted for academic research only.<br /> Personal use is also permitted, but republication/redistribution requires IEEE permission.<br /> See for more information.

You might also like

Downloadable Citations