S.D. Sandbach
Hydrodynamic modelling of tidal-fluvial flows in a large river estuary
Sandbach, S.D.; Nicholas, A.P.; Ashworth, P.J.; Best, J.L.; Keevil, C.E.; Parsons, D.R.; Prokocki, E.W.; Simpson, C.J.
Authors
A.P. Nicholas
P.J. Ashworth
J.L. Best
C.E. Keevil
D.R. Parsons
E.W. Prokocki
C.J. Simpson
Abstract
© 2018 The Authors The transition between riverine and estuarine environments is characterised by a change from unidirectional to bidirectional flows, in a region referred to herein as the Tidally-Influenced Fluvial Zone (TIFZ). In order to improve our understanding of the hydrodynamics and morphodynamics of this zone, we present a combined field and numerical modelling study of the Columbia River Estuary (CRE), USA, tidally-influenced fluvial zone. The CRE is large measuring 40 km in length and between 5 and 10 km wide. A shallow water model (Delft3D) was applied in both 2D and 3D configurations and model sensitivity to the key process parameterizations was investigated. Our results indicate that a 2D model constrained within the estuary can sufficiently reproduce depth-averaged flow within the TIFZ of a stratified estuary. Model results highlight the interactions between tidal-, fluvial- and topographic-forcing that result in depth dependent tidal rectification, and thus zones of residual sediment transport that: i) may be flood-directed along shallow channel margins and in the lee of bars, and simultaneously ii) is ebb-directed within deeper channel thalwegs. This condition is enhanced at lower discharges, but increased fluvial discharge reduces the number and size of regions with net flood-directed sediment transport and flow. These sediment transport patterns provide a mechanism to extend the bar/island topography downstream, and generate flood-directed, ebb-directed, and symmetrical bedforms, all within the same channel. Analysis of the model data reveals flood-directed sediment transport is due to both tidal variability and mean flow. These results highlight the need to include the mean flow component (M0) when considering the long-term morphodynamic evolution in a TIFZ.
Citation
Sandbach, S., Nicholas, A., Ashworth, P., Best, J., Keevil, C., Parsons, D., Prokocki, E., & Simpson, C. (2018). Hydrodynamic modelling of tidal-fluvial flows in a large river estuary. Estuarine, coastal and shelf science, 212, 176-188. https://doi.org/10.1016/j.ecss.2018.06.023
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 25, 2018 |
Online Publication Date | Jun 27, 2018 |
Publication Date | Nov 15, 2018 |
Deposit Date | Feb 13, 2019 |
Publicly Available Date | Feb 13, 2019 |
Journal | Estuarine, Coastal and Shelf Science |
Print ISSN | 0272-7714 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 212 |
Pages | 176-188 |
DOI | https://doi.org/10.1016/j.ecss.2018.06.023 |
Keywords | Sediment transport; Tidal constituent; Residual flow; Tidal-fluvial interactions; Columbia river estuary; Model parameterisation |
Public URL | https://hull-repository.worktribe.com/output/939029 |
Publisher URL | https://www.sciencedirect.com/science/article/pii/S0272771417310843?via%3Dihub |
Contract Date | Feb 13, 2019 |
Files
Article
(8.1 Mb)
PDF
Copyright Statement
This work is licensed under a Creative Commons Attribution 4.0 International License.
You might also like
Working with wood in rivers in the Western United States
(2024)
Journal Article
Real-time social media sentiment analysis for rapid impact assessment of floods
(2023)
Journal Article
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search