Skip to main content

Method to reduce the formation of crystallites in ZnO nanorod thin-films grown via ultra-fast microwave heating

Gray, R. J.; Jaafar, Ayoub H.; Verrelli, E.; Kemp, N. T.

Authors

R. J. Gray

Ayoub H. Jaafar



Abstract

© 2018 This paper discusses the nucleation and growth mechanisms of ZnO nanorod thin-films and larger sized crystallites that form within the solution and on surfaces during an ultra-fast microwave heating growth process. In particular, the work focusses on the elimination of crystallites as this is necessary to improve thin-film uniformity and to prevent electrical short circuits between electrodes in device applications. High microwave power during the early stages of ZnO deposition was found to be a key factor in the formation of unwanted crystallites on substrate surfaces. Once formed, the crystallites, grow at a much faster rate than the nanorods and quickly dominate the thin-film structure. A new two-step microwave heating method was developed that eliminates the onset of crystallite formation, allowing the deposition of large-area nanorod thin-films that are free from crystallites. A dissolution-recrystallization mechanism is proposed to explain why this procedure is successful and we demonstrate the importance of the work in the fabrication of low-cost memristor devices.

Journal Article Type Article
Publication Date Sep 30, 2018
Journal Thin Solid Films
Print ISSN 0040-6090
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 662
Pages 116-122
APA6 Citation Gray, R. J., Jaafar, A. H., Verrelli, E., & Kemp, N. T. (2018). Method to reduce the formation of crystallites in ZnO nanorod thin-films grown via ultra-fast microwave heating. Thin solid films, 662, 116-122. https://doi.org/10.1016/j.tsf.2018.07.034
DOI https://doi.org/10.1016/j.tsf.2018.07.034
Keywords Materials chemistry; Electronic, optical and magnetic materials; Surfaces, coatings and films; Surfaces and interfaces; Metals and alloys
Publisher URL https://www.sciencedirect.com/science/article/pii/S0040609018305005?via%3Dihub
Copyright Statement © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Files

Article (2 Mb)
PDF

Copyright Statement
© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



You might also like



Downloadable Citations