Skip to main content

Research Repository

Advanced Search

All Outputs (594)

Polymer electrolyte fuel cell operating with nickel foam-based gas diffusion layers: A numerical investigation (2024)
Journal Article
Ercelik, M., Ismail, M. S., Hughes, K. J., Ingham, D. B., Ma, L., & Pourkashanian, M. (2025). Polymer electrolyte fuel cell operating with nickel foam-based gas diffusion layers: A numerical investigation. International Journal of Hydrogen Energy, 104, 496-512. https://doi.org/10.1016/j.ijhydene.2024.05.084

Due to their outstanding structural, transport and electrical characteristics, nickel foams serve as excellent candidate materials for gas diffusion layers (GDLs) in polymer electrolyte fuel cells (PEFCs). In this work, a new three-dimensional PEFC m... Read More about Polymer electrolyte fuel cell operating with nickel foam-based gas diffusion layers: A numerical investigation.

Analysis-on-a-roll platforms towards automated and high frequency in-situ sensing of natural geochemical fluxes (2024)
Thesis
Iurkov, A. Analysis-on-a-roll platforms towards automated and high frequency in-situ sensing of natural geochemical fluxes. (Thesis). University of Hull. https://hull-repository.worktribe.com/output/4702966

In the context of the rapidly intensifying crisis of climate change, the intricate dynamics of Earth's ecosystems have assumed a paramount significance. The carbon cycle plays a significant role in the dynamics of the earth’s ecosystem, and anthropog... Read More about Analysis-on-a-roll platforms towards automated and high frequency in-situ sensing of natural geochemical fluxes.

Woody biomass waste derivatives in decarbonised blast furnace ironmaking process (2024)
Journal Article
Wang, R. Q., Jiang, L., Wang, Y. D., Font-Palma, C., Skoulou, V., & Roskilly, A. P. (2024). Woody biomass waste derivatives in decarbonised blast furnace ironmaking process. Renewable & sustainable energy reviews, 199, Article 114465. https://doi.org/10.1016/j.rser.2024.114465

Modern ironmaking process relies significantly on fossil-related fuels, which ultimately results in the enormous CO2 emitted into the atmosphere. Biomass of plant origin, as a carbon-neutral energy source, has been considered as an alternative to fos... Read More about Woody biomass waste derivatives in decarbonised blast furnace ironmaking process.

In Silico and invitro modelling of chronic wounds to improve our understanding of wound biomechanics and to test novel medical devices (2024)
Thesis
Hendon, A. C. In Silico and invitro modelling of chronic wounds to improve our understanding of wound biomechanics and to test novel medical devices. (Thesis). University of Hull. https://hull-repository.worktribe.com/output/4703110

Negative pressure wound therapy (NPWT) is a widely used system that aids the healing of chronic wounds through the application of sub-atmospheric pressure. The effectiveness of this method is widely recognised, however the mechanisms behind this are... Read More about In Silico and invitro modelling of chronic wounds to improve our understanding of wound biomechanics and to test novel medical devices.

Recent advances in synchrotron X-ray studies of the atomic structures of metal alloys in liquid state (2024)
Journal Article
Huang, S., Xiang, K., & Mi, J. (2024). Recent advances in synchrotron X-ray studies of the atomic structures of metal alloys in liquid state. Journal of Materials Science & Technology, 203, 180-200. https://doi.org/10.1016/j.jmst.2024.02.038

Research into the atomic structures of metal materials in the liquid state, their dynamic evolution versus temperature until the onset of crystal nucleation has been a central research topic in condensed matter physics and materials science for well... Read More about Recent advances in synchrotron X-ray studies of the atomic structures of metal alloys in liquid state.

Effect of multi-interface electron transfer on water splitting and an innovative electrolytic cell for synergistic hydrogen production and degradation (2024)
Journal Article
Yuan, X., Hao, W., Teng, Y., Zhang, H., Han, C., Zhang, X., Li, Z., Ibhadon, A. O., & Teng, F. (2024). Effect of multi-interface electron transfer on water splitting and an innovative electrolytic cell for synergistic hydrogen production and degradation. Chemosphere, 356, Article 141929. https://doi.org/10.1016/j.chemosphere.2024.141929

The cleaning and utilization of industry wastewater are still a big challenge. In this work, we mainly investigate the effect of electron transfer among multi-interfaces on water electrolysis reaction. Typically, the CoS2, Co3S4/CoS2 (designated as C... Read More about Effect of multi-interface electron transfer on water splitting and an innovative electrolytic cell for synergistic hydrogen production and degradation.

From textile waste to carbon nanomaterials for offshore wind turbine blades (2023)
Thesis
Marsden, H. From textile waste to carbon nanomaterials for offshore wind turbine blades. (Thesis). University of Hull. https://hull-repository.worktribe.com/output/4459343

The aim of this research was to determine the feasibility of carbon production from the pyrolysis of textile waste, seeking a way of increasing the sustainability of “fast fashion” and recycling the 92 million tonnes of textile waste entering landfil... Read More about From textile waste to carbon nanomaterials for offshore wind turbine blades.

Synthesis of graphene-encapsulated Fe3C/Fe catalyst supported on Sporopollenin exine capsules, and its use for the reverse water gas shift reaction (2023)
Journal Article
Malik, W., Tafoya, J. . P. V., Doszczeczko, S., Jorge Sobrido, A. B., Skoulou, V., Boa, A. N., Zhang, Q., Ramirez Reina, T., & Volpe, R. (in press). Synthesis of graphene-encapsulated Fe3C/Fe catalyst supported on Sporopollenin exine capsules, and its use for the reverse water gas shift reaction. ACS Sustainable Chemistry and Engineering,

Bioderived materials have emerged as sustainable catalyst supports for several heterogeneous reactions owing to their naturally occurring hierarchal pore size distribution, high surface area, and thermal and chemical stability. We utilize sporopollen... Read More about Synthesis of graphene-encapsulated Fe3C/Fe catalyst supported on Sporopollenin exine capsules, and its use for the reverse water gas shift reaction.

Photocatalytic Hydrolysis─A Sustainable Option for the Chemical Upcycling of Polylactic Acid (2023)
Journal Article
Garratt, A., Nguyen, K., Brooke, A., Taylor, M. J., & Francesconi, M. G. (2023). Photocatalytic Hydrolysis─A Sustainable Option for the Chemical Upcycling of Polylactic Acid. ACS Environmental Au, 3(6), 342–347. https://doi.org/10.1021/acsenvironau.3c00040

Plastic waste is a critical global issue, yet current strategies to avoid committing plastic waste to landfills include incineration, gasification, or pyrolysis high carbon emitting and energy consuming approaches. However, plastic waste can become a... Read More about Photocatalytic Hydrolysis─A Sustainable Option for the Chemical Upcycling of Polylactic Acid.

New catalysts bearing chelate ligands for ring opening polymerization studies. (2023)
Thesis
Zhang, X. New catalysts bearing chelate ligands for ring opening polymerization studies. (Thesis). University of Hull. https://hull-repository.worktribe.com/output/4443364

Chapter 1: The accumulation of traditional polymer (plastic) pollution has led people to start looking for biodegradable plastics as alternatives. This first chapter provides information on the concept and the development of biodegradable polymers. I... Read More about New catalysts bearing chelate ligands for ring opening polymerization studies..

Airflow rates and breathlessness recovery from submaximal exercise in healthy adults: prospective, randomised, cross-over study (2023)
Journal Article
Brew, A., O'Beirne, S., Johnson, M. J., Ramsenthaler, C., Watson, P., Rubini, P. A., Fagan, M. J., Swan, F., & Simpson, A. (online). Airflow rates and breathlessness recovery from submaximal exercise in healthy adults: prospective, randomised, cross-over study. BMJ supportive & palliative care, https://doi.org/10.1136/spcare-2023-004309

Objectives: Facial airflow from a hand-held fan may reduce breathlessness severity and hasten postexertion recovery. Data from randomised controlled trials are limited and the optimal airflow speed remains unknown. We aimed to determine the effect of... Read More about Airflow rates and breathlessness recovery from submaximal exercise in healthy adults: prospective, randomised, cross-over study.

X-ray CT-based numerical investigation of nickel foam-based GDLs under compression (2023)
Journal Article
Ercelik, M., Ismail, M. S., Hughes, K. J., Ingham, D. B., Ma, L., & Pourkashanian, M. (2024). X-ray CT-based numerical investigation of nickel foam-based GDLs under compression. International Journal of Hydrogen Energy, 50(Part B), 1338-1357. https://doi.org/10.1016/j.ijhydene.2023.07.001

Nickel foams feature superior structural and transport characteristics and are therefore strong candidates to be used as gas diffusion layers (GDLs) in polymer electrolyte fuel cells (PEFCs). In this work, the impact of compression on the key structu... Read More about X-ray CT-based numerical investigation of nickel foam-based GDLs under compression.

Lamellar-structured fibrous silica as a new engineered catalyst for enhancing CO<inf>2</inf> methanation (2023)
Journal Article
Aziz, M. A., Jalil, A. A., Hamid, M. Y., Hassan, N. S., Khusnun, N. F., Bahari, M. B., Hatta, A. H., Matmin, J., Zein, S. H., & Saravanan, R. (2023). Lamellar-structured fibrous silica as a new engineered catalyst for enhancing CO2 methanation. Fuel, 352, Article 129113. https://doi.org/10.1016/j.fuel.2023.129113

Recently, Centre of Hydrogen Energy (CHE) has developed new structures of fibrous mesoporous silica nanoparticles (FMSN) and fibrous Mobil composition of matter-41 (FMCM-41) called CHE-SM and CHE-S41, respectively. Both are used as a support, along w... Read More about Lamellar-structured fibrous silica as a new engineered catalyst for enhancing CO<inf>2</inf> methanation.

Air-breathing polymer electrolyte fuel cells: A review (2023)
Journal Article
Calili-Cankir, F., Ismail, M. S., Ingham, D. B., Hughes, K. J., Ma, L., & Pourkashanian, M. (2023). Air-breathing polymer electrolyte fuel cells: A review. Renewable energy, 213, 86-108. https://doi.org/10.1016/j.renene.2023.05.134

Air-breathing polymer electrolyte fuel cells have become a promising power source to provide uninterrupted power for small electronic devices. This review focuses primarily on describing how the air-breathing PEFC performance is improved through opti... Read More about Air-breathing polymer electrolyte fuel cells: A review.

Single- and Double-Sided Coated Gas Diffusion Layers Used in Polymer Electrolyte Fuel Cells: A Numerical Study (2023)
Journal Article
Okereke, I. C., Ismail, M. S., Ingham, D. B., Hughes, K., Ma, L., & Pourkashanian, M. (2023). Single- and Double-Sided Coated Gas Diffusion Layers Used in Polymer Electrolyte Fuel Cells: A Numerical Study. Energies, 16(11), Article 4363. https://doi.org/10.3390/en16114363

A new three-dimensional numerical model of a polymer electrolyte fuel cell (PEFC) with a single straight channel was developed to primarily investigate the important impact of the double-sided microporous layer (MPL) coating on the overall performanc... Read More about Single- and Double-Sided Coated Gas Diffusion Layers Used in Polymer Electrolyte Fuel Cells: A Numerical Study.

Optimisation and characterisation of graphene-based microporous layers for polymer electrolyte membrane fuel cells (2023)
Journal Article
Lee, F. C., Ismail, M. S., Zhang, K., Ingham, D. B., Aldakheel, F., Hughes, K. J., Ma, L., El-Kharouf, A., & Pourkashanian, M. (2024). Optimisation and characterisation of graphene-based microporous layers for polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 51 part D, 1311-1325. https://doi.org/10.1016/j.ijhydene.2023.05.003

The viability of graphene-based microporous layers (MPLs) for polymer electrolyte membrane fuel cells is critically assessed through detailed characterisation of the morphology, microstructure, transport properties and electrochemical characterisatio... Read More about Optimisation and characterisation of graphene-based microporous layers for polymer electrolyte membrane fuel cells.

Multiphase, three-dimensional PEM fuel cell numerical model with a variable cross-sectional area flow channel (2023)
Journal Article
Tian, J., Ismail, M. S., Ingham, D., Hughes, K. J., Ma, L., & Pourkashanian, M. (2023). Multiphase, three-dimensional PEM fuel cell numerical model with a variable cross-sectional area flow channel. International Journal of Numerical Methods for Heat and Fluid Flow, 33(8), 2778-2799. https://doi.org/10.1108/HFF-02-2023-0075

Purpose: This paper aims to investigate the impact of three different flow channel cross sections on the performance of the fuel cell. Design/methodology/approach: A comprehensive three-dimensional polymer electrolyte membrane fuel cell model has bee... Read More about Multiphase, three-dimensional PEM fuel cell numerical model with a variable cross-sectional area flow channel.

Comparison of activated carbon and low-cost adsorbents for removal of 2,4-dichlorophenol from wastewater using Aspen Adsorption and response surface methodology (2023)
Journal Article
Yasir, H. A., Zein, S. H., Holliday, M. C., Jabbar, K. J., Ahmed, U., & Jalil, A. A. (2023). Comparison of activated carbon and low-cost adsorbents for removal of 2,4-dichlorophenol from wastewater using Aspen Adsorption and response surface methodology. Environmental Technology, https://doi.org/10.1080/09593330.2023.2202829

In this paper, the adsorption of the chlorinated organic compound, 2,4-dichlorophenol, using activated carbon (AC), bagasse fly ash (BFA) and rice husk fly ash (RHFA) in a packed bed column was simulated using Aspen Adsorption software. The purpose o... Read More about Comparison of activated carbon and low-cost adsorbents for removal of 2,4-dichlorophenol from wastewater using Aspen Adsorption and response surface methodology.