Skip to main content

Research Repository

Advanced Search

All Outputs (8)

The Head and Neck Anatomy of Sea Turtles (Cryptodira: Chelonioidea) and Skull Shape in Testudines (2012)
Journal Article
Jones, M. E., Werneburg, I., Curtis, N., Penrose, R., O'Higgins, P., Fagan, M. J., & Evans, S. E. (2012). The Head and Neck Anatomy of Sea Turtles (Cryptodira: Chelonioidea) and Skull Shape in Testudines. PLoS ONE, 7(11), Article e47852. https://doi.org/10.1371/journal.pone.0047852

Background: Sea turtles (Chelonoidea) are a charismatic group of marine reptiles that occupy a range of important ecological roles. However, the diversity and evolution of their feeding anatomy remain incompletely known. Methodology/Principal Finding... Read More about The Head and Neck Anatomy of Sea Turtles (Cryptodira: Chelonioidea) and Skull Shape in Testudines.

Masticatory loadings and cranial deformation in Macaca fascicularis: a finite element analysis sensitivity study (2012)
Journal Article
Fitton, L. C., Shi, J. F., Fagan, M. J., & O'Higgins, P. (2012). Masticatory loadings and cranial deformation in Macaca fascicularis: a finite element analysis sensitivity study. Journal of anatomy, 221(1), 55-68. https://doi.org/10.1111/j.1469-7580.2012.01516.x

Biomechanical analyses are commonly conducted to investigate how craniofacial form relates to function, particularly in relation to dietary adaptations. However, in the absence of corresponding muscle activation patterns, incomplete muscle data recor... Read More about Masticatory loadings and cranial deformation in Macaca fascicularis: a finite element analysis sensitivity study.

Developing a musculoskeletal model of the primate skull: Predicting muscle activations, bite force, and joint reaction forces using multibody dynamics analysis and advanced optimisation methods (2012)
Journal Article
Shi, J., Curtis, N., Fitton, L. C., O'Higgins, P., & Fagan, M. J. (2012). Developing a musculoskeletal model of the primate skull: Predicting muscle activations, bite force, and joint reaction forces using multibody dynamics analysis and advanced optimisation methods. Journal of Theoretical Biology, 310, 21-30. https://doi.org/10.1016/j.jtbi.2012.06.006

An accurate, dynamic, functional model of the skull that can be used to predict muscle forces, bite forces, and joint reaction forces would have many uses across a broad range of disciplines. One major issue however with musculoskeletal analyses is t... Read More about Developing a musculoskeletal model of the primate skull: Predicting muscle activations, bite force, and joint reaction forces using multibody dynamics analysis and advanced optimisation methods.

Shearing Mechanics and the Influence of a Flexible Symphysis During Oral Food Processing in Sphenodon (Lepidosauria: Rhynchocephalia) (2012)
Journal Article
Jones, M. E. H., Evans, S. E., Curtis, N., O'Higgins, P., & Fagan, M. J. (2012). Shearing Mechanics and the Influence of a Flexible Symphysis During Oral Food Processing in Sphenodon (Lepidosauria: Rhynchocephalia). Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 295(7), 1075-1091. https://doi.org/10.1002/ar.22487

An LPV pole-placement approach to friction compensation as an FTC problem (2012)
Journal Article
Chen, L., Patton, R., & Klinkhieo, S. (2012). An LPV pole-placement approach to friction compensation as an FTC problem. International Journal of Applied Mathematics and Computer Science, 22(1), 149-160. https://doi.org/10.2478/v10006-012-0011-z

The concept of combining robust fault estimation within a controller system to achieve active Fault Tolerant Control (FTC) has been the subject of considerable interest in the recent literature. The current study is motivated by the need to develop m... Read More about An LPV pole-placement approach to friction compensation as an FTC problem.

Modeling and analysis of intraband absorption in quantum-dot-in-well mid-infrared photodetectors (2012)
Journal Article
Hong, B. H., Rybchenko, S. I., Itskevich, I. E., Haywood, S. K., Tan, C. H., Vines, P., & Hugues, M. (2012). Modeling and analysis of intraband absorption in quantum-dot-in-well mid-infrared photodetectors. Journal of applied physics, 111(3), 033713. https://doi.org/10.1063/1.3684603

Intraband absorption in quantum-dot-in-a-well (DWELL) mid-infrared photodetectors is investigated using photocurrent spectroscopy and computationally cost-effective modeling linked to experimental data. The DWELL systems are challenging for modeling... Read More about Modeling and analysis of intraband absorption in quantum-dot-in-well mid-infrared photodetectors.