Skip to main content

Research Repository

Advanced Search

H2020 - ICT - DEIS

People Involved

Dr Martin Walker

Dr Septavera Sharvia

A conceptual framework to incorporate complex basic events in HiP-HOPS (2019)
Book Chapter
Kabir, S., Aslansefat, K., Sorokos, I., Papadopoulos, Y., & Gheraibia, Y. (2019). A conceptual framework to incorporate complex basic events in HiP-HOPS. In Y. Papadopoulos, K. Aslansefat, P. Katsaros, & M. Bozzano (Eds.), Model-Based Safety and Assessment. IMBSA 2019 (109-124). Springer Verlag. https://doi.org/10.1007/978-3-030-32872-6_8

Reliability evaluation for ensuring the uninterrupted system operation is an integral part of dependable system development. Model-based safety analysis (MBSA) techniques such as Hierarchically Performed Hazard Origin and Propagation Studies (HiP-HOP... Read More about A conceptual framework to incorporate complex basic events in HiP-HOPS.

DEIS: Dependability Engineering Innovation for Industrial CPS (2017)
Book Chapter
Armengaud, E., Macher, G., Massoner, A., Frager, S., Adler, R., Schneider, D., Longo, S., Melis, M., Groppo, R., Villa, F., O’Leary, P., Bambury, K., Finnegan, A., Zeller, M., Höfig, K., Papadopoulos, Y., Hawkins, R., & Kelly, T. (2018). DEIS: Dependability Engineering Innovation for Industrial CPS. In C. Zachäus, B. Müller, & G. Meyer (Eds.), Advanced Microsystems for Automotive Applications 2017 : Smart Systems Transforming the Automobile (151-163). Springer. https://doi.org/10.1007/978-3-319-66972-4_13

The open and cooperative nature of Cyber-Physical Systems (CPS) poses new challenges in assuring dependability. The DEIS project (Dependability Engineering Innovation for automotive CPS. This project has received funding from the European Union’s Hor... Read More about DEIS: Dependability Engineering Innovation for Industrial CPS.