Skip to main content

Research Repository

Advanced Search

Research and Development of Thallium Nitride Nanorods (Ta3N5-NRs) for CO2 reduction Photoreactors

People Involved

Profile image of Dr Alex Ibhadon

Dr Alex Ibhadon A.O.Ibhadon@hull.ac.uk
Reader, Catalysis and Reactor Engineering for Energy Generation and Chemical Synthesis

Dr Eni Oko

Comparative energy and exergy analysis of ortho-para hydrogen and non-ortho-para hydrogen conversion in hydrogen liquefaction (2024)
Journal Article
Ahmad, A., Oko, E., & Ibhadon, A. (2024). Comparative energy and exergy analysis of ortho-para hydrogen and non-ortho-para hydrogen conversion in hydrogen liquefaction. International Journal of Hydrogen Energy, 78, 991-1003. https://doi.org/10.1016/j.ijhydene.2024.06.368

This study reports the comparative energy and exergy analysis of ortho-para hydrogen and non-ortho-para hydrogen conversion in hydrogen liquefaction process. Two cases were simulated, case A – hydrogen liquefaction with ortho-parahydrogen conversion... Read More about Comparative energy and exergy analysis of ortho-para hydrogen and non-ortho-para hydrogen conversion in hydrogen liquefaction.

Boosting hydrogen production of uniform CuCo-ZIF nanododecahedrons by bimetal node and glycerol (2023)
Journal Article
Wang, Q., Teng, Y., Ma, B., Zhang, X., Yuan, X., Li, Z., Jiang, W., Teng, F., Ruan, W., & Ibhadon, A. O. (2023). Boosting hydrogen production of uniform CuCo-ZIF nanododecahedrons by bimetal node and glycerol. Materials Today Chemistry, 28, Article 101359. https://doi.org/10.1016/j.mtchem.2022.101359

Compared with fossil fuels reforming to hydrogen, electrolytic water to hydrogen is highly energy-intensive. It is still a big challenge to decrease the cost of electrolytic water to hydrogen. Herein, we investigate the electrocatalytic activity of u... Read More about Boosting hydrogen production of uniform CuCo-ZIF nanododecahedrons by bimetal node and glycerol.

Boosting hydrogen production in ultrathin birnessite nanosheet arrays-based electrolytic cell by glycerol and urea oxidation reactions (2022)
Journal Article
Ruan, W., Yuan, C., Teng, F., Liao, H., & Ibhadon, A. O. (2022). Boosting hydrogen production in ultrathin birnessite nanosheet arrays-based electrolytic cell by glycerol and urea oxidation reactions. Materials Today Chemistry, 26, Article 101086. https://doi.org/10.1016/j.mtchem.2022.101086

It is still a big challenge to develop an innovative strategy to overcome sluggish oxygen evolution reaction (OER). Herein, ultrathin birnessite@nickel foam nanosheet array (KMO@NF) with oxygen vacancy (VO) is prepared by an in-situ growth method. KM... Read More about Boosting hydrogen production in ultrathin birnessite nanosheet arrays-based electrolytic cell by glycerol and urea oxidation reactions.

Promoted N[triple bond]N activation by oxygen and boosted ammonia production over Bi4O5Br2 (2021)
Journal Article
Yuan, C., Lu, Z., Jiang, W., Ibhadon, A. O., & Teng, F. (2021). Promoted N[triple bond]N activation by oxygen and boosted ammonia production over Bi4O5Br2. Molecular Catalysis, 515, Article 111913. https://doi.org/10.1016/j.mcat.2021.111913

Nitrogen photoreduction method is recognized as a safe, environmentally friendly and sustainable technology for ammonia production. For this method, nevertheless, it is a big challenge to efficaciously activate the N[tbnd]N triple bond. In this work,... Read More about Promoted N[triple bond]N activation by oxygen and boosted ammonia production over Bi4O5Br2.