Skip to main content

Research Repository

Advanced Search

Outputs (258)

Sensor Fault Tolerant Control for a 3-DOF Helicopter Considering Detectability Loss (2023)
Journal Article
Wang, X., Wang, Y., Zhang, Z., Wang, X., & Patton, R. (2023). Sensor Fault Tolerant Control for a 3-DOF Helicopter Considering Detectability Loss. IEEE Transactions on Circuits and Systems I: Regular Papers, https://doi.org/10.1109/TCSI.2023.3303153

This paper proposes a novel active fault tolerant control (FTC) scheme for a 3-degree-of-freedom (3-DOF) helicopter with sensor faults. As a challenge, only attitude angles are considered available, so that when the sensors measuring the elevation/tr... Read More about Sensor Fault Tolerant Control for a 3-DOF Helicopter Considering Detectability Loss.

The wave energy converter control competition (WECCCOMP): Wave energy control algorithms compared in both simulation and tank testing (2023)
Journal Article
Ringwood, J. V., Tom, N., Ferri, F., Yu, Y. H., Coe, R. G., Ruehl, K., Bacelli, G., Shi, S., Patton, R. J., Tona, P., Sabiron, G., Merigaud, A., Ling, B. A., & Faedo, N. (2023). The wave energy converter control competition (WECCCOMP): Wave energy control algorithms compared in both simulation and tank testing. Applied Ocean Research, 138, Article 103653. https://doi.org/10.1016/j.apor.2023.103653

The wave energy control competition established a benchmark problem which was offered as an open challenge to the wave energy system control community. The competition had two stages: In the first stage, competitors used a standard wave energy simula... Read More about The wave energy converter control competition (WECCCOMP): Wave energy control algorithms compared in both simulation and tank testing.

Model Predictive Energy-Maximising Tracking Control for a Wavestar-Prototype Wave Energy Converter (2023)
Journal Article
Li, D., & Patton, R. (2023). Model Predictive Energy-Maximising Tracking Control for a Wavestar-Prototype Wave Energy Converter. Journal of Marine Science and Engineering, 11(7), Article 1289. https://doi.org/10.3390/jmse11071289

To date, one of the main challenges in the wave energy field is to achieve energy-maximizing control in order to reduce the levelized cost of energy (LCOE). This paper presents a model predictive velocity tracking control method based on a hierarchic... Read More about Model Predictive Energy-Maximising Tracking Control for a Wavestar-Prototype Wave Energy Converter.

Application of Semantic Segmentation in High-Impedance Fault Diagnosis Combined Signal Envelope and Hilbert Marginal Spectrum for Resonant Distribution Networks (2023)
Journal Article
Gao, J.-H., Guo, M.-F., Lin, S., & Chen, D.-Y. (2023). Application of Semantic Segmentation in High-Impedance Fault Diagnosis Combined Signal Envelope and Hilbert Marginal Spectrum for Resonant Distribution Networks. Expert Systems with Applications, 231, Article 120631. https://doi.org/10.1016/j.eswa.2023.120631

The diagnosis of high-impedance fault (HIF) is a critical challenge due to the presence of faint signals that exhibit distortion and randomness. In this study, we propose a novel diagnostic approach for HIF based on semantic segmentation of the signa... Read More about Application of Semantic Segmentation in High-Impedance Fault Diagnosis Combined Signal Envelope and Hilbert Marginal Spectrum for Resonant Distribution Networks.

Actuator fault tolerant offshore wind turbine load mitigation control (2023)
Journal Article
Liu, Y., Patton, R. J., & Shi, S. (2023). Actuator fault tolerant offshore wind turbine load mitigation control. Renewable energy, 205, 432-446. https://doi.org/10.1016/j.renene.2023.01.092

Offshore wind turbine (OWT) rotors have large diameters with flexible blade structures which are subject to asymmetrical loads caused by blade flapping and turbulent or unsteady wind flow. Rotor imbalance inevitably leads to enhanced fatigue of blade... Read More about Actuator fault tolerant offshore wind turbine load mitigation control.

Flexible neutral point displacement overvoltage suppression method based on backstepping control in unbalanced distribution networks (2023)
Journal Article
Zheng, Z.-Y., Xu, J.-F., Zhang, B.-L., Wang, H., Guo, M.-F., & Lin, S. (2023). Flexible neutral point displacement overvoltage suppression method based on backstepping control in unbalanced distribution networks. International Journal of Electrical Power & Energy Systems, 148, Article 108950. https://doi.org/10.1016/j.ijepes.2023.108950

Three-phase AC distribution networks are required to operate as symmetrically as possible for optimal performance, but the three-phase-to-ground parameters are asymmetric in the field due to network construction deviation, resulting in the three-phas... Read More about Flexible neutral point displacement overvoltage suppression method based on backstepping control in unbalanced distribution networks.

Electronic Structure and Optical Properties of Strained Type-II InAsxSb1-x/InAs Quantum Dots for Mid-Infrared Applications (2023)
Journal Article
Yeap, G. H., Rybchenko, S., Itskevich, I., Haywood, S., Carrington, P., & Krier, A. (2023). Electronic Structure and Optical Properties of Strained Type-II InAsxSb1-x/InAs Quantum Dots for Mid-Infrared Applications. Defect and Diffusion Forum, 425, 3-8. https://doi.org/10.4028/p-72o15p

InSb-based self-assembled quantum dots (SAQDs) are very promising for the mid-infrared (3-5 μm) optical range. We have analysed the electronic structure and optical properties of InAsxSb1- x/InAs dots. In this paper, we present the results of the mod... Read More about Electronic Structure and Optical Properties of Strained Type-II InAsxSb1-x/InAs Quantum Dots for Mid-Infrared Applications.

An iterative strategy for robust integration of fault estimation and fault-tolerant control (2022)
Journal Article
Lan, J., & Patton, R. (2022). An iterative strategy for robust integration of fault estimation and fault-tolerant control. Automatica : the journal of IFAC, the International Federation of Automatic Control, 145, Article 110556. https://doi.org/10.1016/j.automatica.2022.110556

This paper considers fault estimation (FE) and fault-tolerant control (FTC) for linear parameter varying systems with actuator and sensor faults, uncertainties, and disturbances. The inevitable coupling between the FE and FTC functions needs to be ta... Read More about An iterative strategy for robust integration of fault estimation and fault-tolerant control.

Distributed Antittack Fault-Tolerant Tracking Control for Vehicle Platoon Systems Under Cyber-Physical Threats (2022)
Journal Article
Liu, C., Zhao, J., & Patton, R. J. (2023). Distributed Antittack Fault-Tolerant Tracking Control for Vehicle Platoon Systems Under Cyber-Physical Threats. IEEE Transactions on Industrial Informatics, 19(6), 7825-7834. https://doi.org/10.1109/TII.2022.3171343

Vehicle platoon systems are considered as automatous vehicles in a platoon-based driving pattern in which a following vehicle follows the preceding vehicle and maintains the desired vehicle spacing. This article investigates the leader-following trac... Read More about Distributed Antittack Fault-Tolerant Tracking Control for Vehicle Platoon Systems Under Cyber-Physical Threats.

Locally fitting hyperplanes to high-dimensional data (2022)
Journal Article
Hou, M., & Kambhampati, C. (2022). Locally fitting hyperplanes to high-dimensional data. Neural Computing and Applications, 34(11), 8885-8896. https://doi.org/10.1007/s00521-022-06909-y

Problems such as data compression, pattern recognition and artificial intelligence often deal with a large data sample as observations of an unknown object. An effective method is proposed to fit hyperplanes to data points in each hypercubic subregio... Read More about Locally fitting hyperplanes to high-dimensional data.