Skip to main content

Research Repository

Advanced Search

Critical role of oxygen in silver-catalyzed Glaser-Hay coupling on Ag(100) under vacuum and in solution on Ag particles

Orozco, Noé; Kyriakou, Georgios; Beaumont, Simon K.; Fernandez Sanz, Javier; Holgado, Juan P.; Taylor, Martin J.; Espinós, Juan P.; Márquez, Antonio M.; Watson, David J.; Gonzalez-Elipe, Agustin R.; Lambert, Richard M.


Noé Orozco

Georgios Kyriakou

Simon K. Beaumont

Javier Fernandez Sanz

Juan P. Holgado

Juan P. Espinós

Antonio M. Márquez

David J. Watson

Agustin R. Gonzalez-Elipe

Richard M. Lambert


The essential role of oxygen in enabling heterogeneously catalyzed Glaser-Hay coupling of phenylacetylene on Ag(100) was elucidated by STM, laboratory and synchrotron photoemission, and DFT calculations. In the absence of coadsorbed oxygen, phenylacetylene formed well-ordered dense overlayers which, with increasing temperature, desorbed without reaction. In striking contrast, even at 120 K, the presence of oxygen led to immediate and complete disruption of the organic layer due to abstraction of acetylenic hydrogen with formation of a disordered mixed layer containing immobile adsorbed phenylacetylide. At higher temperatures phenylacetylide underwent Glaser-Hay coupling to form highly ordered domains of diphenyldiacetylene that eventually desorbed without decomposition, leaving the bare metal surface. DFT calculations showed that, while acetylenic H abstraction was otherwise an endothermic process, oxygen adatoms triggered a reaction-initiating exothermic pathway leading to OH(a) + phenylacetylide, consistent with the experimental observations. Moreover, it was found that, with a solution of phenylacetylene in nonane and in the presence of O2, Ag particles catalyzed Glaser-Hay coupling with high selectivity. Rigorous exclusion of oxygen from the reactor strongly suppressed the catalytic reaction. Interestingly, too much oxygen lowers the selectivity toward diphenyldiacetylene. Thus, vacuum studies and theoretical calculations revealed the key role of oxygen in the reaction mechanism, subsequently borne out by catalytic studies with Ag particles that confirmed the presence of oxygen as a necessary and sufficient condition for the coupling reaction to occur. The direct relevance of model studies to a mechanistic understanding of coupling reactions under conditions of practical catalysis was reaffirmed.


Orozco, N., Kyriakou, G., Beaumont, S. K., Fernandez Sanz, J., Holgado, J. P., Taylor, M. J., …Lambert, R. M. (2017). Critical role of oxygen in silver-catalyzed Glaser-Hay coupling on Ag(100) under vacuum and in solution on Ag particles. ACS Catalysis, 7(5), 3113-3120.

Journal Article Type Article
Acceptance Date Mar 22, 2017
Online Publication Date Mar 30, 2017
Publication Date May 5, 2017
Deposit Date Dec 4, 2018
Publicly Available Date Dec 4, 2018
Journal ACS Catalysis
Electronic ISSN 2155-5435
Publisher American Chemical Society
Peer Reviewed Peer Reviewed
Volume 7
Issue 5
Pages 3113-3120
Keywords Glaser−Hay coupling; silver surface; catalysis; C−C bond formation; XPS; STM; DFT
Public URL
Publisher URL
Related Public URLs


Article (1.1 Mb)

Copyright Statement
This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Catalysis, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see

You might also like

Downloadable Citations