Etienne Pierre Joly
Development of an autonomous lab-on-a-chip system with ion separation and conductivity detection for river water quality monitoring
Joly, Etienne Pierre
Authors
Contributors
Ian M. Bell
Supervisor
Gillian M. Greenway
Supervisor
S. J. (Stephen John), 1954 Haswell
Supervisor
Abstract
This thesis discusses the development of a lab on a chip (LOC) ion separation for river water quality monitoring using a capacitively coupled conductivity detector (C⁴D) with a novel baseline suppression technique.
Our first interest was to be able to integrate such a detector in a LOC. Different designs (On-capillary design and on-chip design) have been evaluated for their feasibility and their performances. The most suitable design integrated the electrode close to the channel for an enhanced coupling while having the measurement electronics as close as possible to reduce noise. The final chip design used copper tracks from a printed circuit board (PCB) as electrodes, covered by a thin Polydimethylsiloxane (PDMS) layer to act as electrical insulation. The layer containing the channel was made using casting and bonded to the PCB using oxygen plasma. Flow experiments have been conduced to test this design as a detection cell for capacitively coupled contactless conductivity detection (C⁴D).
The baseline signal from the system was reduced using a novel baseline suppression technique. Decrease in the background signal increased the dynamic range of the concentration to be measured before saturation occurs. The sensitivity of the detection system was also improved when using the baseline suppression technique. Use of high excitation voltages has proven to increase the sensitivity leading to an estimated limit of detection of 0.0715 μM for NaCl (0.0041 mg/L).
The project also required the production of an autonomous system capable of operating for an extensive period of time without human intervention. Designing such a system involved the investigation of faults which can occur in autonomous system for the in-situ monitoring of water quality. Identification of possible faults (Bubble, pump failure, etc.) and detection methods have been investigated. In-depth details are given on the software and hardware architecture constituting this autonomous system and its controlling software.
Citation
Joly, E. P. (2013). Development of an autonomous lab-on-a-chip system with ion separation and conductivity detection for river water quality monitoring. (Thesis). University of Hull. Retrieved from https://hull-repository.worktribe.com/output/4217540
Thesis Type | Thesis |
---|---|
Deposit Date | Dec 21, 2015 |
Publicly Available Date | Feb 23, 2023 |
Keywords | Engineering |
Public URL | https://hull-repository.worktribe.com/output/4217540 |
Additional Information | Department of Engineering, The University of Hull |
Award Date | Dec 1, 2013 |
Files
Thesis
(11.7 Mb)
PDF
Copyright Statement
© 2013 Joly, Etienne Pierre. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder.
You might also like
Electro-catalytic reactions
(2009)
Thesis
Pollution reduction with processed waste materials
(2013)
Thesis
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search