Zhengqiao Yin
Highly efficient and recyclable monolithic bioreactor for interfacial enzyme catalysis
Yin, Zhengqiao; Zhou, Yiding; Liu, Xiucai; Zhang, Shengmiao; Binks, Bernard P.
Authors
Yiding Zhou
Xiucai Liu
Shengmiao Zhang
Professor Bernie Binks B.P.Binks@hull.ac.uk
Emeritus Professor of Physical Chemistry
Abstract
Hypothesis: Biocatalysts are key to the realization of all bioconversions in nature. However, the difficulty of combining the biocatalyst and other chemicals in one system limits their application in artificial reaction systems. Although some effort, such as Pickering interfacial catalysis and enzyme-immobilized microchannel reactors, have addressed this challenge an effective method to combine chemical substrates and biocatalysts in a highly efficient and re-usable monolith system is still to be developed. Experiments: A repeated batch-type biphasic interfacial biocatalysis microreactor was developed using enzyme-loaded polymersomes in the void surface of porous monoliths. Polymersomes, loaded with Candida antarctica Lipase B (CALB), are fabricated by self-assembly of the copolymer PEO-b-P(St-co-TMI) and used to stabilize oil-in-water (o/w) Pickering emulsions as a template to prepare monoliths. By adding monomer and Tween 85 to the continuous phase, controllable open-cell monoliths are prepared to inlay CALB-loaded polymersomes in the pore walls. Findings: The microreactor is proven to be highly effective and recyclable when a substrate flows through it, which offers superior benefits of absolute separation to a pure product and no enzyme loss. The relative enzyme activity is constantly maintained above 93% in 15 cycles. The enzyme is constantly present in the microenvironment of the PBS buffer ensuring its immunity to inactivation and facilitating its recycling.
Citation
Yin, Z., Zhou, Y., Liu, X., Zhang, S., & Binks, B. P. (2023). Highly efficient and recyclable monolithic bioreactor for interfacial enzyme catalysis. Journal of colloid and interface science, 648, 308-316. https://doi.org/10.1016/j.jcis.2023.06.009
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 2, 2023 |
Online Publication Date | Jun 4, 2023 |
Publication Date | Oct 14, 2023 |
Deposit Date | Feb 18, 2024 |
Publicly Available Date | Jun 5, 2024 |
Journal | Journal of Colloid and Interface Science |
Print ISSN | 0021-9797 |
Electronic ISSN | 1095-7103 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 648 |
Pages | 308-316 |
DOI | https://doi.org/10.1016/j.jcis.2023.06.009 |
Public URL | https://hull-repository.worktribe.com/output/4316582 |
Files
Accepted manuscript
(1.7 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
Cholic Acid/Glutathione-Assembled Nanofibrils for Stabilizing Pickering Emulsion Biogels
(2024)
Journal Article
Competition between hydrogen bonding and electrostatic repulsion in pH-switchable emulsions
(2023)
Journal Article
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search