Skip to main content

Research Repository

Advanced Search

The PEX1 ATPase stabilizes PEX6 and plays essential roles in peroxisome biology

Rinaldi, Mauro A.; Fleming, Wendell A.; Gonzalez, Kim L.; Park, Jaeseok; Ventura, Meredith J.; Patel, Ashish B.; Bartel, Bonnie

Authors

Wendell A. Fleming

Kim L. Gonzalez

Jaeseok Park

Meredith J. Ventura

Ashish B. Patel

Bonnie Bartel



Abstract

A variety of metabolic pathways are sequestered in peroxisomes, conserved organelles that are essential for human and plant survival. Peroxin (PEX) proteins generate and maintain peroxisomes. The PEX1 ATPase facilitates recycling of the peroxisome matrix protein receptor PEX5 and is the most commonly affected peroxin in human peroxisome biogenesis disorders. Here, we describe the isolation and characterization of, to our knowledge, the first Arabidopsis (Arabidopsis thaliana) pex1 missense alleles: pex1-2 and pex1-3. pex1-2 displayed peroxisome-related defects accompanied by reduced PEX1 and PEX6 levels. These pex1-2 defects were exacerbated by growth at high temperature and ameliorated by growth at low temperature or by PEX6 overexpression, suggesting that PEX1 enhances PEX6 stability and vice versa. pex1-3 conferred embryo lethality when homozygous, confirming that PEX1, like several other Arabidopsis peroxins, is essential for embryogenesis. pex1-3 displayed symptoms of peroxisome dysfunction when heterozygous; this semidominance is consistent with PEX1 forming a heterooligomer with PEX6 that is poisoned by pex1-3 subunits. Blocking autophagy partially rescued PEX1/pex1-3 defects, including the restoration of normal peroxisome size, suggesting that increasing peroxisome abundance can compensate for the deficiencies caused by pex1-3 and that the enlarged peroxisomes visible in PEX1/pex1-3 may represent autophagy intermediates. Overexpressing PEX1 in wild-type plants impaired growth, suggesting that excessive PEX1 can be detrimental. Our genetic, molecular, and physiological data support the heterohexamer model of PEX1-PEX6 function in plants.

Citation

Rinaldi, M. A., Fleming, W. A., Gonzalez, K. L., Park, J., Ventura, M. J., Patel, A. B., & Bartel, B. (2017). The PEX1 ATPase stabilizes PEX6 and plays essential roles in peroxisome biology. Plant Physiology, 174(4), 2231-2247. https://doi.org/10.1104/pp.17.00548

Journal Article Type Article
Acceptance Date Jun 7, 2017
Online Publication Date Jun 9, 2017
Publication Date Aug 2, 2017
Deposit Date Aug 12, 2023
Publicly Available Date Aug 14, 2023
Journal Plant Physiology
Print ISSN 0032-0889
Electronic ISSN 1532-2548
Publisher Oxford University Press
Peer Reviewed Peer Reviewed
Volume 174
Issue 4
Pages 2231-2247
DOI https://doi.org/10.1104/pp.17.00548
Public URL https://hull-repository.worktribe.com/output/4355460

Files

Published article (2.6 Mb)
PDF

Publisher Licence URL
http://creativecommons.org/licenses/by/4.0

Copyright Statement
© The Author(s) 2017. Published by Oxford University Press on behalf of American Society of Plant Biologists. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.




You might also like



Downloadable Citations