Skip to main content

Research Repository

Advanced Search

Dr Jean-Sebastien Bouillard

Image

Jean-Sebastien Bouillard

Senior Lecturer in Physics


Using adsorption kinetics to assemble vertically aligned nanorods at liquid interfaces for metamaterial applications (2022)
Journal Article
Morgan, S. O., Muravitskaya, A., Lowe, C., Adawi, A. M., Bouillard, J. G., Horozov, T. S., …Buzza, D. M. (2022). Using adsorption kinetics to assemble vertically aligned nanorods at liquid interfaces for metamaterial applications. Physical chemistry chemical physics : PCCP, 24, 11000-11013. https://doi.org/10.1039/d1cp05484h

Vertically aligned monolayers of metallic nanorods have a wide range of applications as metamaterials or in surface enhanced Raman spectroscopy. However the fabrication of such structures using current top-down methods or through assembly on solid su... Read More about Using adsorption kinetics to assemble vertically aligned nanorods at liquid interfaces for metamaterial applications.

Persistent near-infrared photoconductivity of ZnO nanoparticles based on plasmonic hot charge carriers (2022)
Journal Article
Ibrahem, M. A., Verrelli, E., Cheng, F., Adawi, A. M., Bouillard, J. S. G., & O'Neill, M. (2022). Persistent near-infrared photoconductivity of ZnO nanoparticles based on plasmonic hot charge carriers. Journal of applied physics, 131(10), Article 103103. https://doi.org/10.1063/5.0079006

We report on the coupling of ZnO nanoparticles with plasmonic gold nanoislands in a solution-processed photodetector, which results in a clear enhancement in the optical absorption and the electrical responsivity of ZnO nanoparticles, to cover the vi... Read More about Persistent near-infrared photoconductivity of ZnO nanoparticles based on plasmonic hot charge carriers.

Förster Resonance Energy Transfer Rate and Efficiency in Plasmonic Nanopatch Antennas (2022)
Journal Article
Hamza, A. O., Bouillard, J. S. G., & Adawi, A. M. (in press). Förster Resonance Energy Transfer Rate and Efficiency in Plasmonic Nanopatch Antennas. Chemphotochem, https://doi.org/10.1002/cptc.202100285

Successful control of Förster resonance energy transfer (FRET) through the engineering of the local density of optical states (LDOS) will allow us to develop novel strategies to fully exploit this phenomenon in key enabling technologies. Here we pres... Read More about Förster Resonance Energy Transfer Rate and Efficiency in Plasmonic Nanopatch Antennas.

Adsorption trajectories of nonspherical particles at liquid interfaces (2021)
Journal Article
Buzza, D. M. A., Stasiuk, G. J., Horozov, T. S., Adawi, A. M., Bouillard, J. G., Lowe, C., …Morgan, S. O. (2021). Adsorption trajectories of nonspherical particles at liquid interfaces. Physical Review E, 103(4), Article 042604. https://doi.org/10.1103/PhysRevE.103.042604

The adsorption of colloidal particles at liquid interfaces is of great importance scientifically and industrially, but the dynamics of the adsorption process is still poorly understood. In this paper we use a Langevin model to study the adsorption dy... Read More about Adsorption trajectories of nonspherical particles at liquid interfaces.

Mode Engineering in Large Arrays of Coupled Plasmonic–Dielectric Nanoantennas (2021)
Journal Article
Córdova‐Castro, R. M., Krasavin, A. V., Nasir, M. E., Wang, P., Bouillard, J. S. G., McPolin, C. P. T., & Zayats, A. V. (in press). Mode Engineering in Large Arrays of Coupled Plasmonic–Dielectric Nanoantennas. Advanced Optical Materials, https://doi.org/10.1002/adom.202001467

Strong electromagnetic field confinement and enhancement can be readily achieved in plasmonic nanoantennas, however, this is considerably more difficult to realize over large areas, which is essential for many applications. Here, dispersion engineeri... Read More about Mode Engineering in Large Arrays of Coupled Plasmonic–Dielectric Nanoantennas.

NIR-quantum dots in biomedical imaging and their future (2021)
Journal Article
Gil, H. M., Price, T. W., Chelani, K., Bouillard, J. S. G., Calaminus, S. D., & Stasiuk, G. J. (2021). NIR-quantum dots in biomedical imaging and their future. iScience, 24(3), https://doi.org/10.1016/j.isci.2021.102189

Fluorescence imaging has gathered interest over the recent years for its real-time response and high sensitivity. Developing probes for this modality has proven to be a challenge. Quantum dots (QDs) are colloidal nanoparticles that possess unique opt... Read More about NIR-quantum dots in biomedical imaging and their future.

Förster resonance energy transfer and the local optical density of states in plasmonic nanogaps (2021)
Journal Article
Hamza, A. O., Viscomi, F. N., Bouillard, J. S. G., & Adawi, A. M. (2021). Förster resonance energy transfer and the local optical density of states in plasmonic nanogaps. Journal of Physical Chemistry Letters, 12(5), 1507-1513. https://doi.org/10.1021/acs.jpclett.0c03702

Förster resonance energy transfer (FRET) is a fundamental phenomenon in photosynthesis and is of increasing importance for the development and enhancement of a wide range of optoelectronic devices, including color-tuning LEDs and lasers, light harves... Read More about Förster resonance energy transfer and the local optical density of states in plasmonic nanogaps.

Water‐soluble rhenium clusters with triazoles: the effect of chemical structure on cellular internalization and the DNA binding of the complexes (2020)
Journal Article
Konovalov, D. I., Ivanov, A. A., Frolova, T. S., Eltsov, I. V., Gayfulin, Y. M., Plunkett, L., …Shestopalov, M. A. (2020). Water‐soluble rhenium clusters with triazoles: the effect of chemical structure on cellular internalization and the DNA binding of the complexes. Chemistry : a European journal, 26(61), 13904-13914. https://doi.org/10.1002/chem.202001680

Here we explore the effect of the nature of organic ligands in rhenium cluster complexes [Re6Q8L6]4− (where Q=S or Se, and L=benzotriazole, 1,2,3-triazole or 1,2,4-triazole) on the biological properties of the complexes, in particular on the cellular... Read More about Water‐soluble rhenium clusters with triazoles: the effect of chemical structure on cellular internalization and the DNA binding of the complexes.

Long-term ambient air-stable cubic CsPbBr3 perovskite quantum dots using molecular bromine (2019)
Journal Article
Thapa, S., Bhardwaj, K., Basel, S., Pradhan, S., Eling, C. J., Adawi, A. M., …Tamang, S. (2019). Long-term ambient air-stable cubic CsPbBr3 perovskite quantum dots using molecular bromine. Nanoscale advances, 1(9), 3388-3391. https://doi.org/10.1039/c9na00486f

We report unprecedented phase stability of cubic CsPbBr3 quantum dots in ambient air obtained by using Br2 as halide precursor. Mechanistic investigation reveals the decisive role of temperature-controlled in situ generated, oleylammonium halide spec... Read More about Long-term ambient air-stable cubic CsPbBr3 perovskite quantum dots using molecular bromine.

Dynamic electric field alignment of metal-organic framework micro- rods (2019)
Journal Article
Cheng, F., Young, A. J., Bouillard, J. G., Kemp, N. T., Guillet-Nicolas, R., Hall, C. H., …Chin, J. M. (2019). Dynamic electric field alignment of metal-organic framework micro- rods. Journal of the American Chemical Society, 141(33), 12989-12993. https://doi.org/10.1021/jacs.9b06320

Alignment of Metal Organic Framework (MOF) crystals has previously been performed via careful control of oriented MOF growth on substrates, as well as by dynamic magnetic alignment. We show here that microrod crystals of the MOF NU-1000 can also be d... Read More about Dynamic electric field alignment of metal-organic framework micro- rods.