Skip to main content

Research Repository

Advanced Search

Outputs (16)

Detection of doxycycline hyclate and oxymetazoline hydrochloride in pharmaceutical preparations via spectrophotometry and microfluidic paper-based analytical device (μPADs) (2020)
Journal Article
Abdulsattar, J. O., Hadi, H., Richardson, S., Iles, A., & Pamme, N. (2020). Detection of doxycycline hyclate and oxymetazoline hydrochloride in pharmaceutical preparations via spectrophotometry and microfluidic paper-based analytical device (μPADs). Analytica Chimica Acta, 1136, 196-204. https://doi.org/10.1016/j.aca.2020.09.045

There is growing demand for simple to operate, sensitive, on-site quantitative assays to investigate concentrations of drug molecules in pharmaceutical preparations for quality assurance. Here, we report on the development of two colorimetric analysi... Read More about Detection of doxycycline hyclate and oxymetazoline hydrochloride in pharmaceutical preparations via spectrophotometry and microfluidic paper-based analytical device (μPADs).

Microfluidic-Based Electrochemical Immunosensing of Ferritin (2020)
Journal Article
Garg, M., Christensen, M. G., Iles, A., Sharma, A. L., Singh, S., & Pamme, N. (2020). Microfluidic-Based Electrochemical Immunosensing of Ferritin. Biosensors, 10(8), Article 91. https://doi.org/10.3390/bios10080091

Ferritin is a clinically important biomarker which reflects the state of iron in the body and is directly involved with anemia. Current methods available for ferritin estimation are generally not portable or they do not provide a fast response. To co... Read More about Microfluidic-Based Electrochemical Immunosensing of Ferritin.

Rapid Detection of Group B Streptococcus (GBS) from artificial urine samples based on IFAST and ATP Bioluminescence Assay: from development to practical challenges during protocol testing in Kenya (2019)
Journal Article
Ngamsom, B., Wandera, E. A., Iles, A., Kimani, R., Muregi, F., Gitaka, J., & Pamme, N. (2019). Rapid Detection of Group B Streptococcus (GBS) from artificial urine samples based on IFAST and ATP Bioluminescence Assay: from development to practical challenges during protocol testing in Kenya. Analyst, 144(23), 6889-6897. https://doi.org/10.1039/c9an01808e

© The Royal Society of Chemistry 2019. We report the rapid detection (20 min) of Streptococcus agalactiae, Group B Streptococcus (GBS) employing on-chip magnetic isolation of GBS based on immiscible filtration assisted by surface tension (IFAST), fol... Read More about Rapid Detection of Group B Streptococcus (GBS) from artificial urine samples based on IFAST and ATP Bioluminescence Assay: from development to practical challenges during protocol testing in Kenya.

Two-step numerical approach to predict ferrofluid droplet generation and manipulation inside multilaminar flow chambers (2019)
Journal Article
Gómez-Pastora, J., Amiri Roodan, V., Karampelas, I. H., Alorabi, A. Q., Tarn, M. D., Iles, A., Bringas, E., Paunov, V. N., Pamme, N., Furlani, E. P., & Ortiz, I. (2019). Two-step numerical approach to predict ferrofluid droplet generation and manipulation inside multilaminar flow chambers. Journal of physical chemistry. C, 123(15), 10065-10080. https://doi.org/10.1021/acs.jpcc.9b01393

Copyright © 2019 American Chemical Society. In this study, a computational fluid dynamics approach is implemented to investigate the dynamic behavior of continuous-flow droplet microfluidics. The developed approach predicts both droplet generation an... Read More about Two-step numerical approach to predict ferrofluid droplet generation and manipulation inside multilaminar flow chambers.

A microfluidic atmospheric-pressure plasma reactor for water treatment (2019)
Journal Article
Patinglag, L., Sawtell, D., Iles, A., Melling, L. M., & Shaw, K. J. (2019). A microfluidic atmospheric-pressure plasma reactor for water treatment. Plasma Chemistry and Plasma Processing, 39(3), 561–575. https://doi.org/10.1007/s11090-019-09970-z

A dielectric barrier discharge microfluidic plasma reactor, operated at atmospheric pressure, was studied for its potential to treat organic contaminants in water. Microfluidic technology represents a compelling approach for plasma-based water treatm... Read More about A microfluidic atmospheric-pressure plasma reactor for water treatment.

A label-free aptamer-based nanogap capacitive biosensor with greatly diminished electrode polarization effects (2019)
Journal Article
Ghobaei Namhil, Z., Kemp, C., Verrelli, E., Iles, A., Pamme, N., Adawi, A. M., & Kemp, N. (2019). A label-free aptamer-based nanogap capacitive biosensor with greatly diminished electrode polarization effects. Physical chemistry chemical physics : PCCP, 21(2), 681-691. https://doi.org/10.1039/c8cp05510f

A significant impediment to the use of impedance spectroscopy in bio-sensing is the electrode polarization effect that arises from the movement of free ions to the electrode-solution interface, forming an electrical double layer (EDL). The EDL screen... Read More about A label-free aptamer-based nanogap capacitive biosensor with greatly diminished electrode polarization effects.

Computational modeling and fluorescence microscopy characterization of a two-phase magnetophoretic microsystem for continuous-flow blood detoxification (2018)
Journal Article
Gómez-Pastora, J., González-Fernández, C., Real, E., Iles, A., Bringas, E., Furlani, E. P., & Ortiz, I. (2018). Computational modeling and fluorescence microscopy characterization of a two-phase magnetophoretic microsystem for continuous-flow blood detoxification. Lab on a chip, 18(11), 1593-1606. https://doi.org/10.1039/c8lc00396c

Magnetic beads can be functionalized to capture and separate target pathogens from blood for extracorporeal detoxification. The beads can be magnetically separated from a blood stream and collected into a coflowing buffer solution using a two-phase l... Read More about Computational modeling and fluorescence microscopy characterization of a two-phase magnetophoretic microsystem for continuous-flow blood detoxification.

A microfluidic device for rapid screening of E. coli O157:H7 based on IFAST and ATP bioluminescence assay for water analysis (2017)
Journal Article
Ngamsom, B., Truyts, A., Fourie, L., Kumar, S., Tarn, M. D., Iles, A., Moodley, K., Land, K. J., & Pamme, N. (2017). A microfluidic device for rapid screening of E. coli O157:H7 based on IFAST and ATP bioluminescence assay for water analysis. Chemistry: a European journal, 23(52), 12754-12757. https://doi.org/10.1002/chem.201703487

© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim We present a simple microfluidic system for rapid screening of Escherichia coli (E. coli) O157:H7 employing the specificity of immunomagnetic separation (IMS) via immiscible filtration assisted by s... Read More about A microfluidic device for rapid screening of E. coli O157:H7 based on IFAST and ATP bioluminescence assay for water analysis.

Definition of a magnetic susceptibility of conglomerates with magnetite particles. Particularities of defining single particle susceptibility (2017)
Journal Article
Sandulyak, A. A., Sandulyak, A. V., Ershova, V., Pamme, N., Ngmasom, B., & Iles, A. (2017). Definition of a magnetic susceptibility of conglomerates with magnetite particles. Particularities of defining single particle susceptibility. Journal of Magnetism and Magnetic Materials, 441, 724-734. https://doi.org/10.1016/j.jmmm.2017.06.027

Data of a magnetic susceptibility of ferro-and the ferrimagnetic particles of many technogenic, natural, special media are especially demanded for the solution of various tasks connected with purposeful magnetic impact on these particles. One of prod... Read More about Definition of a magnetic susceptibility of conglomerates with magnetite particles. Particularities of defining single particle susceptibility.

Cell sorting by endocytotic capacity in a microfluidic magnetophoresis device (2011)
Journal Article
Robert, D., Pamme, N., Conjeaud, H., Gazeau, F., Iles, A., & Wilhelm, C. (2011). Cell sorting by endocytotic capacity in a microfluidic magnetophoresis device. Lab on a chip, 11(11), 1902-1910. https://doi.org/10.1039/c0lc00656d

Magnetically labelled cells are finding a wealth of applications for in vitro analysis as well as in vivo treatments. Sorting of cells into subpopulations based on their magnetite loading is an important step in such procedures. Here, we study the so... Read More about Cell sorting by endocytotic capacity in a microfluidic magnetophoresis device.