George Soultanidis
Development of an anatomically correct mouse phantom for dosimetry measurement in small animal radiotherapy research
Soultanidis, George; Subiel, Anna; Renard, Isaline; Reinhart, Anna Merle; Green, Victoria L.; Oelfke, Uwe; Archibald, Stephen J.; Greenman, John; Tulk, Amanda; Walker, Adrian; Schettino, Giuseppe; Cawthorne, Christopher J.
Authors
Anna Subiel
Isaline Renard
Anna Merle Reinhart
Victoria L. Green
Uwe Oelfke
Professor Steve Archibald S.J.Archibald@hull.ac.uk
Professor in Molecular Imaging
Professor John Greenman J.Greenman@hull.ac.uk
Professor of Tumour Immunology
Amanda Tulk
Adrian Walker
Giuseppe Schettino
Christopher J. Cawthorne
Abstract
Significant improvements in radiotherapy are likely to come from biological rather than technical optimization, for example increasing tumour radiosensitivity via combination with targeted therapies. Such paradigms must first be evaluated in preclinical models for efficacy, and recent advances in small animal radiotherapy research platforms allow advanced irradiation protocols, similar to those used clinically, to be carried out in orthotopic models. Dose assessment in such systems is complex however, and a lack of established tools and methodologies for traceable and accurate dosimetry is currently limiting the capabilities of such platforms and slowing the clinical uptake of new approaches. Here we report the creation of an anatomically correct phantom, fabricated from materials with tissue-equivalent electron density, into which dosimetry detectors can be incorporated for measurement as part of quality control (QC). The phantom also allows training in preclinical radiotherapy planning and cross-institution validation of dose delivery protocols for small animal radiotherapy platforms without the need to sacrifice animals, with high reproducibility.
Mouse CT data was acquired and segmented into soft tissue, bone and lung. The skeleton was fabricated using 3D printing, whilst lung was created using computer numerical control (CNC) milling. Skeleton and lung were then set into a surface-rendered mould and soft tissue material added to create a whole-body phantom. Materials for fabrication were characterized for atomic composition and attenuation for x-ray energies typically found in small animal irradiators. Finally cores were CNC milled to allow intracranial incorporation of bespoke detectors (alanine pellets) for dosimetry measurement.
Citation
Soultanidis, G., Subiel, A., Renard, I., Reinhart, A. M., Green, V. L., Oelfke, U., Archibald, S. J., Greenman, J., Tulk, A., Walker, A., Schettino, G., & Cawthorne, C. J. (2019). Development of an anatomically correct mouse phantom for dosimetry measurement in small animal radiotherapy research. Physics in Medicine and Biology, 64(12), Article 12NT02. https://doi.org/10.1088/1361-6560/ab215b
Journal Article Type | Article |
---|---|
Acceptance Date | May 13, 2019 |
Online Publication Date | Jun 21, 2019 |
Publication Date | Jun 21, 2019 |
Deposit Date | Jun 22, 2019 |
Publicly Available Date | Jun 22, 2020 |
Journal | Physics in Medicine & Biology |
Print ISSN | 0031-9155 |
Electronic ISSN | 1361-6560 |
Publisher | IOP Publishing |
Peer Reviewed | Peer Reviewed |
Volume | 64 |
Issue | 12 |
Article Number | 12NT02 |
DOI | https://doi.org/10.1088/1361-6560/ab215b |
Public URL | https://hull-repository.worktribe.com/output/2023861 |
Publisher URL | https://iopscience.iop.org/article/10.1088/1361-6560/ab215b |
Contract Date | Jun 24, 2019 |
Files
Article
(542 Kb)
PDF
Copyright Statement
©2019 IOP publishing
You might also like
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search