K. A. White
Influence of particle composition and thermal cycling on bijel formation
White, K. A.; Schofield, A. B.; Binks, B. P.; Clegg, P. S.
Authors
A. B. Schofield
Professor Bernard P Binks B.P.Binks@hull.ac.uk
Professor of Physical Chemistry
P. S. Clegg
Abstract
Colloidal particles with appropriate wetting properties can become very strongly trapped at an interface between two immiscible fluids. We have harnessed this phenomenon to create a new class of soft materials with intriguing and potentially useful characteristics. The material is known as a bijel: bicontinuous interfacially-jammed emulsion gel. It is a colloid-stabilized emulsion with fluid-bicontinuous domains. The potential to create these gels was first predicted using computer simulations. Experimentally we use mixtures of water and 2,6-lutidine at the composition for which the system undergoes a critical demixing transition on warming. Colloidal silica, with appropriate surface chemistry, is dispersed while the system is in the single-fluid phase; the composite sample is then slowly warmed well beyond the critical temperature. The liquids phase separate via spinodal decomposition and the particles become swept up on the newly created interfaces. As the domains coarsen the interfacial area decreases and the particles eventually become jammed together. The resulting structures have a significant yield stress and are stable for many months. Here we begin to explore the complex wetting properties of fluorescently tagged silica surfaces in water-lutidine mixtures, showing how they can be tuned to allow bijel creation. Additionally we demonstrate how the particle properties change with time while they are immersed in the solvents.
Citation
White, K. A., Schofield, A. B., Binks, B. P., & Clegg, P. S. (2008). Influence of particle composition and thermal cycling on bijel formation. Journal of Physics: Condensed Matter, 20(49), Article ARTN 494223. https://doi.org/10.1088/0953-8984/20/49/494223
Journal Article Type | Article |
---|---|
Acceptance Date | Sep 1, 2008 |
Online Publication Date | Nov 12, 2008 |
Publication Date | Dec 10, 2008 |
Journal | JOURNAL OF PHYSICS-CONDENSED MATTER |
Print ISSN | 0953-8984 |
Electronic ISSN | 1361-648X |
Publisher | IOP Publishing |
Peer Reviewed | Peer Reviewed |
Volume | 20 |
Issue | 49 |
Article Number | ARTN 494223 |
DOI | https://doi.org/10.1088/0953-8984/20/49/494223 |
Keywords | General Materials Science; Condensed Matter Physics |
Public URL | https://hull-repository.worktribe.com/output/387127 |
Publisher URL | http://iopscience.iop.org/article/10.1088/0953-8984/20/49/494223/meta |
You might also like
How polymer additives reduce the pour point of hydrocarbon solvents containing wax crystals
(2015)
Journal Article
Self-propulsion of liquid marbles: Leidenfrost-like levitation driven by marangoni flow
(2015)
Journal Article
Mechanical compression to characterize the robustness of liquid marbles
(2015)
Journal Article