Skip to main content

Research Repository

Advanced Search

Dr Jamshed Iqbal's Outputs (168)

Adaptive reconfigurable learning algorithm for robust optimal longitudinal motion control of UAVs (2025)
Journal Article
Saleem, O., Tanveer, A., & Iqbal, J. (2025). Adaptive reconfigurable learning algorithm for robust optimal longitudinal motion control of UAVs. Algorithms, 18(4), Article 180. https://doi.org/10.3390/a18040180

This study presents the formulation and verification of a novel online adaptive reconfigu-rable learning control algorithm (RLCA) for improved longitudinal motion control and disturbance compensation in unmanned aerial vehicles (UAVs). The proposed a... Read More about Adaptive reconfigurable learning algorithm for robust optimal longitudinal motion control of UAVs.

Correction to: Dual FOPID-neural network controller based on fast grey wolf optimizer: application to two-inputs two-outputs helicopter (Systems Science & Control Engineering, (2025), 13, 1, (2449156), 10.1080/21642583.2024.2449156) (2025)
Journal Article
Rezoug, A., Iqbal, J., & Nemra, A. (2025). Correction to: Dual FOPID-neural network controller based on fast grey wolf optimizer: application to two-inputs two-outputs helicopter (Systems Science & Control Engineering, (2025), 13, 1, (2449156), 10.1080/21642583.2024.2449156). Systems Science and Control Engineering, 13(1), Article 2456881. https://doi.org/10.1080/21642583.2025.2456881

Article title: Dual FOPID-neural network controller based on fast grey wolf optimizer: application to two-inputs two-outputs helicopter Authors: Rezoug, A., Iqbal, J., & Nemra, A. Journal:Systems Science & Control EngineeringBibliometrics: Volume 13,... Read More about Correction to: Dual FOPID-neural network controller based on fast grey wolf optimizer: application to two-inputs two-outputs helicopter (Systems Science & Control Engineering, (2025), 13, 1, (2449156), 10.1080/21642583.2024.2449156).

Dual FOPID-neural network controller based on fast grey wolf optimizer: application to two-inputs two-outputs helicopter (2025)
Journal Article
Rezoug, A., Iqbal, J., & Nemra, A. (2025). Dual FOPID-neural network controller based on fast grey wolf optimizer: application to two-inputs two-outputs helicopter. Systems Science and Control Engineering, 13(1), Article 2449156. https://doi.org/10.1080/21642583.2024.2449156

This research introduces a novel dual Fast Grey Wolf Optimizer (FGWO) combined with Radial Basis Function Neural Networks (RBFNN) for a Fractional-Order PID (FOPID) controller applied to a helicopter simulator. The proposed FGWO improves the standard... Read More about Dual FOPID-neural network controller based on fast grey wolf optimizer: application to two-inputs two-outputs helicopter.

Robust Position Control of VTOL UAVs Using a Linear Quadratic Rate-Varying Integral Tracker: Design and Validation (2025)
Journal Article
Saleem, O., Kazim, M., & Iqbal, J. (2025). Robust Position Control of VTOL UAVs Using a Linear Quadratic Rate-Varying Integral Tracker: Design and Validation. Drones, 9(1), Article 73. https://doi.org/10.3390/drones9010073

This article presents an optimal tracking controller retrofitted with a nonlinear adaptive integral compensator, specifically designed to ensure robust and accurate positioning of Vertical Take-Off and Landing (VTOL) Unmanned Aerial Vehicles (UAVs) t... Read More about Robust Position Control of VTOL UAVs Using a Linear Quadratic Rate-Varying Integral Tracker: Design and Validation.

Second order sliding mode control with proportional integral observer for wing rock (2025)
Journal Article
Mahmood, A., & Iqbal, J. (2025). Second order sliding mode control with proportional integral observer for wing rock. Systems Science and Control Engineering, 13(1), Article 245224779. https://doi.org/10.1080/21642583.2025.2460427

In this study, a reduced-order fast proportional integral (PI) observer with a fast convergence function based on the equivalent control notion is developed to estimate the side slip angle β. An unknown state can be discovered by forcing the PI term... Read More about Second order sliding mode control with proportional integral observer for wing rock.

A Fuzzy-Immune-Regulated Single-Neuron Proportional–Integral–Derivative Control System for Robust Trajectory Tracking in a Lawn-Mowing Robot (2024)
Journal Article
Saleem, O., Hamza, A., & Iqbal, J. (2024). A Fuzzy-Immune-Regulated Single-Neuron Proportional–Integral–Derivative Control System for Robust Trajectory Tracking in a Lawn-Mowing Robot. Computers, 13(11), Article 301. https://doi.org/10.3390/computers13110301

This paper presents the constitution of a computationally intelligent self-adaptive steering controller for a lawn-mowing robot to yield robust trajectory tracking and disturbance rejection behavior. The conventional fixed-gain proportional–integral–... Read More about A Fuzzy-Immune-Regulated Single-Neuron Proportional–Integral–Derivative Control System for Robust Trajectory Tracking in a Lawn-Mowing Robot.

Blood-glucose regulator design for diabetics based on LQIR-driven Sliding-Mode-Controller with self-adaptive reaching law (2024)
Journal Article
Saleem, O., & Iqbal, J. (2024). Blood-glucose regulator design for diabetics based on LQIR-driven Sliding-Mode-Controller with self-adaptive reaching law. PLoS ONE, 19(11), Article e0314479. https://doi.org/10.1371/journal.pone.0314479

Type I Diabetes is an endocrine disorder that prevents the pancreas from regulating the blood glucose (BG) levels in a patient’s body. The ubiquitous Linear-Quadratic-Integral-Regulator (LQIR) is an optimal glycemic regulation strategy; however, it i... Read More about Blood-glucose regulator design for diabetics based on LQIR-driven Sliding-Mode-Controller with self-adaptive reaching law.

Genetic algorithm inspired optimal integrated nonlinear control technique for an electric power steering system (2024)
Journal Article
Nguyen, T. A., & Iqbal, J. (2024). Genetic algorithm inspired optimal integrated nonlinear control technique for an electric power steering system. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46(11), Article 661. https://doi.org/10.1007/s40430-024-05255-5

This paper introduces an optimal integrated control method for automotive steering systems called Backstepping Proportional Integral Derivative-Genetic Algorithm (BSPID-GA). The proposed algorithm combines Back Stepping Control (BSC) and Proportional... Read More about Genetic algorithm inspired optimal integrated nonlinear control technique for an electric power steering system.

Differentiator- and Observer-Based Feedback Linearized Advanced Nonlinear Control Strategies for an Unmanned Aerial Vehicle System (2024)
Journal Article
Irfan, S., Zhao, L., Ullah, S., Javaid, U., & Iqbal, J. (2024). Differentiator- and Observer-Based Feedback Linearized Advanced Nonlinear Control Strategies for an Unmanned Aerial Vehicle System. Drones, 8(10), Article 527. https://doi.org/10.3390/drones8100527

This paper presents novel chattering-free robust control strategies for addressing disturbances and uncertainties in a two-degree-of-freedom (2-DOF) unmanned aerial vehicle (UAV) dynamic model, with a focus on the highly nonlinear and strongly couple... Read More about Differentiator- and Observer-Based Feedback Linearized Advanced Nonlinear Control Strategies for an Unmanned Aerial Vehicle System.

Enquiry-based learning pedagogy – Design, development and delivery of a reproducible robotics framework (2024)
Presentation / Conference Contribution
Walker, A., Diaz, K. R. V., McKie, D., & Iqbal, J. (2024, February). Enquiry-based learning pedagogy – Design, development and delivery of a reproducible robotics framework. Presented at Ninth International Congress on Information and Communication Technology (ICICT 2024), London

Hardware-inspired enquiry-based learning (EBL) is an emerging pedagogy to develop transferable engineering skills in students. This paper is aimed at unleashing the potential of this pedagogy via the multidisciplinary domain of robotics to learn the... Read More about Enquiry-based learning pedagogy – Design, development and delivery of a reproducible robotics framework.

Challenges Faced by International Students in Understanding British Accents and Their Mitigation Strategies—A Mixed Methods Study (2024)
Journal Article
Vasquez Diaz, K. R., & Iqbal, J. (2024). Challenges Faced by International Students in Understanding British Accents and Their Mitigation Strategies—A Mixed Methods Study. Education Sciences, 14(7), Article 784. https://doi.org/10.3390/educsci14070784

The massive relocation of international students calls for a thorough investigation of diverse difficulties faced by them, among which language-related barriers are reported to have serious consequences. The main goal of this research is to investiga... Read More about Challenges Faced by International Students in Understanding British Accents and Their Mitigation Strategies—A Mixed Methods Study.

Fuzzy-Augmented Model Reference Adaptive PID Control Law Design for Robust Voltage Regulation in DC–DC Buck Converters (2024)
Journal Article
Saleem, O., Rasheed Ahmad, K., & Iqbal, J. (2024). Fuzzy-Augmented Model Reference Adaptive PID Control Law Design for Robust Voltage Regulation in DC–DC Buck Converters. Mathematics, 12(12), Article 1893. https://doi.org/10.3390/math12121893

This paper presents a novel fuzzy-augmented model reference adaptive voltage regulation strategy for the DC–DC buck converters to enhance their resilience against random input variations and load-step transients. The ubiquitous proportional-integral-... Read More about Fuzzy-Augmented Model Reference Adaptive PID Control Law Design for Robust Voltage Regulation in DC–DC Buck Converters.

Meta-Heuristic Optimization of Sliding Mode Control—Application to Quadrotor-Based Inspection of Solar Panels (2024)
Presentation / Conference Contribution
Rezoug, A., Bouderbala, F.-Z., Baizid, K., & Iqbal, J. (2022, December). Meta-Heuristic Optimization of Sliding Mode Control—Application to Quadrotor-Based Inspection of Solar Panels. Presented at 1st International Conference on Advanced Renewable Energy Systems (ICARES 2022), Tipaza, Algeria

In this paper, inspection of solar energy system is addressed using a quadrotor unmanned aerial vehicle (UAV) system. The accurate positioning of the system on the solar panel requires a robust controller to precisely address the fault while ensuring... Read More about Meta-Heuristic Optimization of Sliding Mode Control—Application to Quadrotor-Based Inspection of Solar Panels.

Improving stability and adaptability of automotive electric steering systems based on a novel optimal integrated algorithm (2024)
Journal Article
Nguyen, T. A., & Iqbal, J. (2024). Improving stability and adaptability of automotive electric steering systems based on a novel optimal integrated algorithm. Engineering Computations, 41(4), 991-1034. https://doi.org/10.1108/EC-10-2023-0675

Purpose: Design a novel optimal integrated control algorithm for the automotive electric steering system to improve the stability and adaptation of the system. Design/methodology/approach: Simulation and calculation. Findings: The output signals foll... Read More about Improving stability and adaptability of automotive electric steering systems based on a novel optimal integrated algorithm.

Fuzzy Fault-tolerant Controller With Guaranteed Performance for MIMO Systems Under Uncertain Initial State (2024)
Journal Article
Yin, C. W., Riaz, S., Uppal, A. A., & Iqbal, J. (2024). Fuzzy Fault-tolerant Controller With Guaranteed Performance for MIMO Systems Under Uncertain Initial State. International journal of control, automation and systems, 22(6), 2038-2054. https://doi.org/10.1007/s12555-023-0327-5

It is always problematic that the initial value of the trajectory tracking error must be inside the area included in the prescribed performance constraint function. To overcome this problem, a novel fault-tolerant control strategy is designed for a s... Read More about Fuzzy Fault-tolerant Controller With Guaranteed Performance for MIMO Systems Under Uncertain Initial State.

Minimum Distance and Minimum Time Optimal Path Planning With Bioinspired Machine Learning Algorithms for Faulty Unmanned Air Vehicles (2024)
Journal Article
Tutsoy, O., Asadi, D., Ahmadi, K., Nabavi-Chashmi, S. Y., & Iqbal, J. (2024). Minimum Distance and Minimum Time Optimal Path Planning With Bioinspired Machine Learning Algorithms for Faulty Unmanned Air Vehicles. IEEE Transactions on Intelligent Transportation Systems, https://doi.org/10.1109/TITS.2024.3367769

Unmanned air vehicles operate in highly dynamic and unknown environments where they can encounter unexpected and unseen failures. In the presence of emergencies, autonomous unmanned air vehicles should be able to land at a minimum distance or minimum... Read More about Minimum Distance and Minimum Time Optimal Path Planning With Bioinspired Machine Learning Algorithms for Faulty Unmanned Air Vehicles.

Compact rover surveying and laser scanning for BIM development (2024)
Journal Article
Jafri, S. R. U. N., Hussain, S. M., Ahmed, A., Rizvi, S. A. H., Kazmi, K. H., & Iqbal, J. (2024). Compact rover surveying and laser scanning for BIM development. PLoS ONE, 19(3 March), Article e0301273. https://doi.org/10.1371/journal.pone.0301273

This paper presents a custom made small rover based surveying, mapping and building information modeling solution. Majority of the commercially available mobile surveying systems are larger in size which restricts their maneuverability in the targete... Read More about Compact rover surveying and laser scanning for BIM development.

Application of hybrid control algorithm on the vehicle active suspension system to reduce vibrations (2024)
Journal Article
Nguyen, T. A., Iqbal, J., Tran, T. T. H., & Hoang, T. B. (2024). Application of hybrid control algorithm on the vehicle active suspension system to reduce vibrations. Advances in Mechanical Engineering, 16(3), https://doi.org/10.1177/16878132241239816

This research proposes a hybrid control algorithm to enhance smoothness in a vehicle’s motion. The control signal is synthesized from two separate controllers, Proportional Integral Derivative (PID) and Sliding Mode Control (SMC), to achieve superior... Read More about Application of hybrid control algorithm on the vehicle active suspension system to reduce vibrations.

A flexible mixed-optimization with H∞ control for coupled twin rotor MIMO system based on the method of inequality (MOI)- An Experimental Study (2024)
Journal Article
Abbas, N., Liu, X., & Iqbal, J. (2024). A flexible mixed-optimization with H∞ control for coupled twin rotor MIMO system based on the method of inequality (MOI)- An Experimental Study. PLoS ONE, 19(3 March), Article e0300305. https://doi.org/10.1371/journal.pone.0300305

This article introduces a cutting-edge H∞ model-based control method for uncertain Multi Input Multi Output (MIMO) systems, specifically focusing on UAVs, through a flexible mixed-optimization framework using the Method of Inequality (MOI). The propo... Read More about A flexible mixed-optimization with H∞ control for coupled twin rotor MIMO system based on the method of inequality (MOI)- An Experimental Study.

Adaptive-optimal MIMO nonsingular terminal sliding mode control of twin-rotor helicopter system: meta-heuristics and super-twisting based control approach (2024)
Journal Article
Rezoug, A., Messah, A., Messaoud, W. A., Baizid, K., & Iqbal, J. (2024). Adaptive-optimal MIMO nonsingular terminal sliding mode control of twin-rotor helicopter system: meta-heuristics and super-twisting based control approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46(3), Article 162. https://doi.org/10.1007/s40430-024-04714-3

This research proposes a novel hybrid control technique based on nonsingular terminal sliding mode (NTSM) control, metaheuristic optimization algorithms and adaptive super-twisting based on Lyapunov stability analysis for controlling Quanser aero sim... Read More about Adaptive-optimal MIMO nonsingular terminal sliding mode control of twin-rotor helicopter system: meta-heuristics and super-twisting based control approach.