Xin Guan
Light-Driven Spatiotemporal Pickering Emulsion Droplet Manipulation Enabled by Plasmonic Hybrid Microgels
Guan, Xin; Cheng, Guangyao; Ho, Yi Ping; Binks, Bernard P.; Ngai, To
Authors
Guangyao Cheng
Yi Ping Ho
Professor Bernie Binks B.P.Binks@hull.ac.uk
Emeritus Professor of Physical Chemistry
To Ngai
Abstract
The past decades have witnessed the development of various stimuli-responsive materials with tailored functionalities, enabling droplet manipulation through external force fields. Among different strategies, light exhibits excellent flexibility for contactless control of droplets, particularly in three-dimensional space. Here, we present a facile synthesis of plasmonic hybrid microgels based on the electrostatic heterocoagulation between cationic microgels and anionic Au nanoparticles. The hybrid microgels are effective stabilizers of oil-in-water Pickering emulsions. In addition, the laser irradiation on Au nanoparticles creats a “cascade effect” to thermally responsive microgels, which triggers a change in microgel wettability, resulting in microgel desorption and emulsion destabilization. More importantly, the localized heating generated by a focused laser induces the generation of a vapor bubble inside oil droplets, leading to the formation of a novel air-in-oil-in-water (A/O/W) emulsion. These A/O/W droplets are able to mimic natural microswimmers in an aqueous environment by tracking the motion of a laser spot, thus achieving on-demand droplet merging and chemical communication between isolated droplets. Such proposed systems are expected to extend the applications of microgel-stabilized Pickering emulsions for substance transport, programmed release and controlled catalytic reactions.
Citation
Guan, X., Cheng, G., Ho, Y. P., Binks, B. P., & Ngai, T. (2023). Light-Driven Spatiotemporal Pickering Emulsion Droplet Manipulation Enabled by Plasmonic Hybrid Microgels. Small, 19(47), Article 2304207. https://doi.org/10.1002/smll.202304207
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 19, 2022 |
Online Publication Date | Jul 25, 2023 |
Publication Date | Nov 22, 2023 |
Deposit Date | Feb 18, 2024 |
Publicly Available Date | Feb 22, 2024 |
Journal | Small |
Print ISSN | 1613-6810 |
Electronic ISSN | 1613-6829 |
Publisher | Wiley |
Peer Reviewed | Peer Reviewed |
Volume | 19 |
Issue | 47 |
Article Number | 2304207 |
DOI | https://doi.org/10.1002/smll.202304207 |
Keywords | Light-driven droplet manipulation; Photothermal effect; Pickering emulsion; Plasmonic hybrid microgels |
Public URL | https://hull-repository.worktribe.com/output/4348686 |
Files
Published article
(3.5 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0
Copyright Statement
© 2023 The Authors. Small published by Wiley-VCH GmbH
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
You might also like
Cholic Acid/Glutathione-Assembled Nanofibrils for Stabilizing Pickering Emulsion Biogels
(2024)
Journal Article
Competition between hydrogen bonding and electrostatic repulsion in pH-switchable emulsions
(2023)
Journal Article
Highly efficient and recyclable monolithic bioreactor for interfacial enzyme catalysis
(2023)
Journal Article
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search